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a b s t r a c t

Westudy theunsteadymotionof a viscoelastic fluidmodeledby a second-order fluidwhere
normal stress coefficients and viscosity depend on the shear rate by using a power-law
model. To study this problem, we use the one-dimensional nine-director Cosserat theory
approach which reduces the exact three-dimensional equations to a system depending
only on time and on a single spatial variable. Integrating the equation of conservation of
linear momentum over the tube cross-section, with the velocity field approximated by the
Cosserat theory, we obtain a one-dimensional system. The velocity field approximation
satisfies both the incompressibility condition and the kinematic boundary condition
exactly. From this one-dimensional system we obtain the relationship between average
pressure and volume flow rate over a finite section of the tube with constant and variable
radius. Also, we obtain the correspondent equation for the wall shear stress which enters
directly in the formulation as a dependent variable. Attention is focused on some numerical
simulation of unsteady/steady flows for average pressure, wall shear stress and on the
analysis of perturbed flows.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this article, we study the unsteady flow of a non-Newtonian fluid in a uniform straight tube, modeled by a generaliza-
tion of the second-order fluid using a hierarchical approach, called Cosserat theory. Let us consider the constitutive equation
for viscoelastic fluids of differential type (also called Rivlin–Ericksen fluids) with complexity n = 2, given by (see e.g. [1])

T = −pI + µA1 + α1A2 + α2A21 (1)
where p is the pressure, −pI is the spherical part of the stress due to the constraint of incompressibility, µ is the coeffi-
cient of viscosity, and α1, α2 are the normal stress coefficients usually called normal stress moduli. The kinematical first two
Rivlin–Ericksen tensors A1 and A2 are defined through (see [2])

A1 = ∇ϑ +
(
∇ϑ

)T
(2)

and

A2 =
d
dt

(
A1
)
+ A1∇ϑ +

(
∇ϑ

)TA1 (3)

where ϑ is the three-dimensional velocity field of the fluid and d
dt (·) denotes the material time derivative. In condition (3)

the material time derivative of the tensor A1 is given by
d
dt

(
A1
)
=
∂

∂t

(
A1
)
+ ϑ · ∇A1.
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The thermodynamics and stability of the fluids related with the constitutive equation (1) have been studied in detail by
Dunn and Fosdick [3], who showed that if the fluid is to be compatible with thermodynamics in the sense that all motions
of the fluid meet the Clausius–Duhem inequality and the assumption that the specific Helmholtz free energy of the fluid is
a minimum in equilibrium, then

µ > 0, α1 > 0, α1 + α2 = 0. (4)

Later, Fosdick and Rajagopal [4], based on the experimental observation, showed that formany non-Newtonian fluids of cur-
rent rheological interest the reported values for α1 and α2 do not satisfy the restriction (4)2,3, relaxed that assumption. Also,
they showed that for arbitrary values of α1+α2, with α1 < 0, a fluid filling a compact domain and adhering to the boundary
of the domain exhibits an anomalous behavior not expected on real fluids. The condition (4)3 simplifies substantially the
mathematical model and the corresponding analysis. The fluids characterized by (4) are known as second-grade fluids as
opposed to the second-order fluids, i.e. fluids where α1 + α2 is arbitrary and α1 < 0. In the sequel we consider fluids with
µ > 0,α1 < 0 andα1+α2 is an arbitrary value. Also, it should also be added that the use of Clausius–Duhem inequality is the
subject matter of much controversy (see e.g. [5]). Now, we consider an extension of the Rivlin–Ericksen fluid model (1) by
introducing no constant viscosity and no constant normal stress moduli. This variables could in principle be a positive func-
tion of the principal invariants of the tensors A1 and A2, but we will further assume that it is only depends on shear rate (see
e.g. [6–8]). Taking into account the constitutive equation recently proposed byMassoudi and Vaidya [7] the Eq. (1), becomes

T = −pI + µ
(
|γ̇ |
)
A1 + α

(
|γ̇ |
)(
α1A2 + α2A21

)
(5)

where

µ
(
|γ̇ |
)
: R+ → R+

is the shear-dependent viscosity function, and

α
(
|γ̇ |
)
: R+ → R+

is the shear-dependent normal stress coefficients function, where γ̇ is a scalar measure of the rate of shear defined by
|γ̇ | =

√
2D : Dwith

D :=
1
2

(
∇ϑ +

(
∇ϑ

)T )
being the rate of deformation tensor. It is seen that the Eq. (5) is similar to themodels proposed byMan et al. (see [9,10]) and
is in fact a generalization of these models as well. Furthermore, it has been argued that the model (5) captures several of the
features of the higher grade typemodels, see [7]. Since themodel under consideration is an ad hoc variation of a more rigor-
ously derived model, there are no information yet on the thermodynamic restrictions of the material moduli. Experimental
studies with polymers (see e.g. [11]), suspensions (see e.g. [12]) and liquid crystals (see e.g. [13]) indicate that for several
fluids, one observes a substantial variation in viscosity and normal stress effects with the shear rate. This dependence is of
a power-law type and experiments indicate that the tangential stress varies at a different rate with the shear rate than the
normal stress, see [14]. The particular functional dependence of the viscosity (normal stress coefficients, respectively) on
shear rate is generally chosen in order to fit experimental data and, in the case of a power-law fluid model, is given by

µ(|γ̇ |) = k1|γ̇ |n−1, α(|γ̇ |) = |γ̇ |m−1 (6)

where the parameters k1 and n,m (positive constants) are called the consistency and the flow index, respectively. Thismodel
has the advantage that it reduces to the standard second-order fluid when n = m = 1 in (6) with k1 = µ, and can also
account for shear-thinning and shear-thickening behavior of the fluid. This investigationmay be found to be relevant in sev-
eral physical, biological and engineering applications. The model (5), with condition (6), may also be pertinent in the study
of blood flow in small vessels where elastic effects become prominent. As in the case of polymers, suspensions and liquid
crystals, it is plausible that normal stress effect in blood is also dependent on the shear rate. A possible simplification to a
three-dimensionalmodel for an incompressible viscoelastic fluid inside a domain is to consider the evolution of average flow
quantities using simpler one-dimensionalmodels. Usually, in the case of flow in a tube, the classical one-dimensionalmodels
are obtained by imposing additional assumptions and integrating both the equations of conservation of linear momentum
and mass over the cross-section of the tube. Here, we introduce a one-dimensional model based on the nine-director ap-
proach developed by Caulk and Naghdi [15]. This theory includes an additional structure of directors (deformable vectors)
assigned to each point on a space curve (Cosserat curve), where a three-dimensional system of equations is replaced by a
one-dimensional system depending on time and on a single spatial variable. The use of directors in continuum mechanics
goes back to Duhem [16] who regards a body as a collection of points together with associated directions. Theories based
on such a model of an oriented medium were further developed by the french scientist Eugène and François Cosserat [17]
and have also been used by several authors in studies of rods, plates and shells (see e.g. [18–22]). An analogous hierarchical
theory for unsteady/steady flows has been developed by Caulk andNaghdi [15] in straight tubes of circular cross-section and
by Green andNaghdi [23] in channels. The same theorywas applied to unsteady viscous fluid flow in curved tubes of circular
and elliptic cross-section by Green et al. [24]. Recently, the nine-director theory has been applied to blood flow by Robert-
son and Sequeira [25] and by Carapau and Sequeira [26]. Also by Carapau et al. [27–30] and by Carapau [31–34] considering
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