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a b s t r a c t

The paper studies the dynamical behaviors of a discrete predator–prey system with
nonmonotonic functional response. The local stability of equilibria of themodel is obtained.
The model undergoes flip bifurcation and Hopf bifurcation by using the center manifold
theorem and the bifurcation theory. Numerical simulations not only illustrate our results,
but also exhibit the complex dynamical behaviors of themodel, such as the period-doubling
bifurcation in periods 2, 4 and 8, and quasi-periodic orbits and chaotic sets. The most
interesting aspect is choosing the same parameters and the initial value of the model; then
we vary the parameter K , and obtain series bifurcations, such as flip bifurcation and Hopf
bifurcation.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

As is well known, in the theory of population dynamical models there are two kinds of mathematical models:
the continuous-time models described by differential equations, and the discrete-time models described by difference
equations. In recent years, more and more attention is being paid to discrete-time population models. The reasons are
as follows. First, the discrete-time models are more appropriate than the continuous-time models when populations
have non-overlapping generations or the number of populations is small. Second, we can get more accurate numerical
simulation results fromdiscrete-timemodels.Moreover, the numerical simulations of continuous-timemodels are obtained
by discretizing the models. At last, the discrete-timemodels have rich dynamical behaviors; for example, the single-species
discrete-time models have bifurcations, chaos and more complex dynamical behaviors (see, [1]).

Predator–preymodels have already receivedmuch attention frommany authors. For example, the stability, permanence
and the existence of periodic solutions of the predator–prey models are studied in [2–12]. For the continuous-time preda-
tor–prey models, many authors have chosen delay as the bifurcation parameter to discuss the Hopf bifurcation in [13–17].
Xiao, Li and Han discussed the B–T bifurcation and Hopf bifurcation of a ratio-dependent predator–prey model with preda-
tor harvesting in [18]. However, there are few articles discussing the dynamical behaviors of predator–prey models, which
include bifurcations and chaos phenomena for the discrete-time models. Liu and Xiao [19] obtained the flip bifurcation and
Hopf bifurcation by using the center manifold theorem and the bifurcation theory. But Agiza et al. [20] and Celik et al. [21]
only showed the flip bifurcation and Hopf bifurcation by using numerical simulations.
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We consider the following continuous-time predator–prey model described by differential equations.
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(1.1)

where x(t), and y(t), denote the numbers of prey and predator at time t , respectively. K > 0 is the carrying capacity of the
prey, r > 0 is the intrinsic growth rate,µ > 0 is the conversion coefficient andD > 0 is the death rate of the predator, a > 0
is the half-saturation constant. Ruan and Xiao in [22] discussed the global qualitative analysis of model (1.1) depending on
all parameters and showed that model (1.1) exhibited the Bogdanov–Takens bifurcation. By choosing the carrying capacity
of the prey and the death rate of the predator as bifurcation parameters, it showed that model (1.1) undergoes a series of
bifurcations including the saddle–node bifurcation, the supercritical and subcritical Hopf bifurcations, and the homoclinic
bifurcation.

In this paper, motivated by the aboveworkswe study the following discrete-timemodel correspondingwithmodel (1.1).
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(1.2)

where r, a, µ,D, and K are defined as in model (1.1). It is assumed that the initial value of solutions in system (1.1) satisfied
x(0) > 0, y(0) > 0 and all the parameters are positive. It is easy to prove that if the initial value (x(0), y(0)) is positive, then
the corresponding solution (x(n), y(n)) is positive too.

In this paper, wewill study the dynamical behaviors ofmodel (1.2). By using the theory of difference equation, the theory
of bifurcation and the center manifold theorem we will establish the series of criteria on the existence and local stability of
equilibria, flip bifurcation and Hopf bifurcation. Furthermore, by using the numerical simulations method we will indicate
the correctness and rationality of our results.

The organization of this paper is as follows. In the second section we discuss the existence and local stability of equilibria
in model (1.2). In the third section we study flip bifurcation and Hopf bifurcation for model (1.2) by choosing K as a
bifurcation parameter. In the fourth section we present the numerical simulations, which not only illustrate our results
with the theoretical analysis, but also exhibit the complex dynamical behaviors such as the cascade of period-doubling
bifurcation in periods 2, 4 and 8, and quasi-periodic orbits and chaotic sets . In the last section we give the discussion.

2. Analysis of equilibria

We firstly discuss the existence of the equilibria of model (1.2). Obviously, E0(0, 0) and E1(K , 0) are two equilibria of
model (1.2). Furthermore, from model (1.2) we know the others equilibria of model (1.2) satisfy
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the first equation of (2.1) is equalized to

Dx2 − µx + aD = 0. (2.2)

Then, there are three cases about the solutions of Eq. (2.2).
Case 1. There is no positive solution for Eq. (2.2), if µ2

− 4aD2 < 0.
Case 2. There is only one positive solution x2 =

µ

2D for Eq. (2.2), if µ2
− 4aD2

= 0.
Thus, submitting x2 into the first equation of (2.1) we have
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Therefore, when K >
µ

2D , E2(x2, y2) is unique positive equilibrium of model (1.2).
Case 3. There are two positive solutions
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if µ2
− 4aD2 > 0. Then, from the second equation of (2.1) we obtain

y3 = r(a + x23)
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Therefore, when K > x3 or K > x4, we obtain that E3(x3, y3) or E4(x4, y4) is the positive equilibria of model (1.2).
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