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a b s t r a c t

In this paper, we consider an impulsive differential equationmodel of plankton allelopathy.
Sufficient conditions ensuring the existence of a unique almost periodic solution of the
system are obtained, by the relation between the solutions of impulsive system and the
corresponding non-impulsive system.
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1. Introduction

Plankton are floating organisms of different phyla living in the pelagic regions of the sea, in freshwater lakes and
in rivers. In addition to its key role at the bottom of the marine food web, phytoplankton also control the carbon
recycling process which has a significant impact on regulating the climate. Because of the difficulty in measuring plankton
biomass, mathematical modeling of plankton population is an important alternative method of improving our knowledge
of the physical and biological processes relating to plankton ecology [1]. One of the first mathematical representations
of allelopathic interactions was proposed by Maynard Smith [2]. The author considered a two species Lotka–Volterra
competitionmodel and introduced a term to take into account the effect of a toxic substance, which is released at a constant
rate by one species when the other is present. The modified model takes the following form

ẋ1(t) = x1(t) (K1 − α1x1(t)− β12x2(t)− γ1x1(t)x2(t)) ,
ẋ2(t) = x2(t) (K2 − α2x2(t)− β21x1(t)− γ2x1(t)x2(t)) ,

(1.1)

where the terms b1(t)x21(t)x2(t) and b2(t)x1(t)x
2
2(t) denote the effect of toxic substances. In recent decades, many scholars

have paid attention to the study of such systems and have obtained many excellent results (see [3–8] for more details).
However, the ecological system is often deeply perturbed by human exploitation activities such as planting and

harvesting and so on, which makes it unsuitable to be considered continually. To obtain a more accurate description of
such systems, we need to consider the impulsive differential equations. In recent years, the impulsive differential equations
have been intensively investigated (see [9–20] for more detail).
In this paper, we study the following nonautonomous impulsive differential equation model of plankton allelopathy:

ẋ1(t) = x1(t)[r1(t)− a11(t)x1(t)− a12(t)x2(t)− b1(t)x1(t)x2(t)],
ẋ2(t) = x2(t)[r2(t)− a21(t)x1(t)− a22(t)x2(t)− b2(t)x1(t)x2(t)], t 6= τk,
x1(τ+k ) = (1+ h1k)x1(τk),
x2(τ+k ) = (1+ h2k)x1(τk), k = 0, 1, 2, . . . ,

(1.2)
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where x1(t), x2(t) are population densities of species x1, x2 at time t , respectively; ri(t), aij(t), bi(t), i, j = 1, 2, are all
continuous almost periodic functions which are bounded above and below by positive constants; h1k, h2k > −1 are
constants and 0 = τ0 < τ1 < τ2 < · · · < τk < τk+1 < · · ·, are impulse points with limk→+∞ τk = +∞.
Li, Dou and Song [13] studied the periodic case of system (1.2), and obtained some results on the permanence and

extinction of the systemby the comparison theorem,which cannot be used to study the existence of almost periodic solution.
It is the first time for us to discuss the existence of a unique almost periodic solution of system (1.2), by the relation between
the solutions of impulsive system and the corresponding non-impulsive system.
By the basic theories of impulsive differential equations in [9,10], system (1.2) has a unique solution X(t) = X(t, X0) ∈

PC([0,+∞), R2) and PC([0,+∞), R2) = {φ : [0,+∞)→ R2, φ is continuous for t 6= τk. Also φ(τ−k ) and φ(τ
+

k ) exist, and
φ(τ−k ) = φ(τk), k = 1, 2, . . .} for each initial value x(0) = x0 ∈ R

2+.
The organization of this paper is as follows. In Section 2, we present some notations and lemmas. In Section 3, we study

the existence of a unique almost periodic solution of system (1.2).

2. Preliminaries

Now, let us state the following definitions and lemmas, which will be useful in proving our main result.

Definition 2.1 ([11]). The set of sequences {τ jk = τk+j − τk}, k, j ∈ Z is said to be uniformly almost periodic if for arbitrary
ε > 0, there exists a relatively dense set of ε-almost periods common for any sequences.

Definition 2.2 ([11]). The function ϕ ∈ PC(R, R) is said to be almost periodic, if the following conditions hold:

(a) the set of sequences {τ jk}, k, j ∈ Z is uniformly almost periodic;
(b) for any ε > 0 there exists a real number δ > 0 such that if the points t ′ and t ′′ belong to one and the same interval of
continuity of ϕ(t) and satisfy the inequality t ′ − t ′′ < δ, then ϕ(t ′)− ϕ(t ′′) < ε;

(c) for any ε > 0 there exists a relatively dense set T such that if τ ∈ T , then ϕ(t + τ) − ϕ(t) < ε for all t ∈ R, satisfying
the condition t − τk > ε, k ∈ Z .

For a given continuous function g(t), we let gL and gM denote inf0≤t<+∞ g(t) and sup0≤t<+∞ g(t), respectively.
Consider the following system

ẏ1(t) = y1(t)[r1(t)− A11(t)y1(t)− A12(t)y2(t)− B1(t)y1(t)y2(t)],
ẏ2(t) = y2(t)[r2(t)− A21(t)y1(t)− A22(t)y2(t)− B2(t)y1(t)y2(t)],

(2.1)

where Aij(t) = aij(t)
∏
0<τk<t

(1+ hjk), Bi(t) = bi(t)
∏
0<τk<t

(1+ h1k)(1+ h2k), 1 ≤ i, j ≤ 2.

Lemma 2.1. Let (y1(t), y2(t))T be any solution of system (2.1) such that yi(0) > 0, then yi(t) > 0 for all t ≥ 0.

Proof. From (2.1), we have y′i(t) = Pi(t)yi(t), i = 1, 2, where Pi(t) = ri(t) − Ai1(t)y1(t) − Ai2(t)y2(t) − Bi(t)y1(t)y2(t).
Thus when yi(0) > 0, we can obtain

yi(t) = yi(0) exp
{∫ t

0
Pi(s)ds

}
> 0.

This completes the proof of Lemma 2.1. �

Lemma 2.2. For systems (1.2) and (2.1), the following results hold:

(1) if (y1(t), y2(t))T is a solution of (2.1), then (x1(t), x2(t))T =
(∏

0<τk<t
(1+h1k)y1(t),

∏
0<τk<t

(1+h2k)y2(t)
)T
is a solution

of (1.2);

(2) if (x1(t), x2(t))T is a solution of (1.2), then (y1(t), y2(t))T =
(∏

0<τk<t
(1+ h1k)−1x1(t),

∏
0<τk<t

(1+ h2k)−1x2(t)
)T
is a

solution of (2.1).

Proof. (1) Suppose that (y1(t), y2(t))T is a solution of (2.1). Let xi(t) =
∏
0<τk<t

(1 + hik)yi(t), i = 1, 2, then for any
t 6= τk, k = 1, 2, . . ., by substituting yi(t) =

∏
0<τk<t

(1 + hik)−1xi(t), i = 1, 2 into system (2.1), we can easily verify
that the first two equations of (1.2) hold.
For t = τk, k = 1, 2, . . ., we have

xi(τ+k ) = lim
t→τ+k

∏
0<τk<t

(1+ hik)yi(t) =
∏

0<τj≤τk

(1+ hij)yi(τk)

= (1+ hik)
∏

0<τj<τk

(1+ hij)yi(τk) = (1+ hik)xi(τk).

So the last two equations of (1.2) also hold. Thus (x1(t), x2(t))T is a solution of (1.2). This proves the conclusion of (1).
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