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a b s t r a c t

By using Mawhin’s continuation theorem of coincidence degree theory, we establish
the existence of four positive periodic solutions for two species periodic Lotka–Volterra
predatory–prey system with harvesting terms. An example is given to illustrate the
effectiveness of our results.
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1. Introduction

Two species Lotaka–Volterra predatory–prey model with harvesting terms is formulated by [1,2]{
ẋ = x(t)(a1 − b1x(t)− c1y(t))− h1,
ẏ = y(t)(a2 − b2y(t)+ c2x(t))− h2,

where x(t) and y(t) denote the densities of the prey and the predator, respectively; ai and bi (i = 1, 2) are all positive
constants and denote the intrinsic growth rates and the intra-specific competition rates, respectively; c1 > 0 is the predation
rate of the predator and c2 > 0 represents the conversion rate at which the ingested prey in excess of what is needed for
maintenance is translated into the predator population increase; hi (i = 1, 2) is the ith species harvesting terms standing for
the harvests. Since realistic models require the inclusion of the effect of changing environment, thismotivates us to consider
the following nonautonomous model:{

ẋ = x(t)(a1(t)− b1(t)x(t)− c1(t)y(t))− h1(t),
ẏ = y(t)(a2(t)− b2(t)y(t)+ c2(t)x(t))− h2(t).

(1.1)

In addition, the effects of a periodically varying environment are important for evolutionary theory as the selective forces on
systems in a fluctuating environment differ from those in a stable environment. Therefore, the assumptions of periodicity
of the parameters are a way of incorporating the periodicity of the environment (e.g., seasonal effects of weather, food
supplies, mating habits, etc.), which leads us to assume that ai(t), bi(t), ci(t) and hi(t) (i, j = 1, 2) are all positive continuous
ω-periodic functions.
Since a very basic and important problem in the study of a population growth model with a periodic environment is

the global existence and stability of a positive periodic solution, which plays a similar role as a globally stable equilibrium
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does in an autonomous model, also, on the existence of positive periodic solutions to system (1.1), few results are found in
literatures. This motivates us to investigate the existence of a positive periodic or multiple positive periodic solutions for
system (1.1). In fact, it is more likely for some biological species to take on multiple periodic change regulations and have
multiple local stable periodic phenomena. Therefore, it is essential for us to investigate the existence of multiple positive
periodic solutions for population models. Our main purpose of this paper is by using Mawhin’s continuation theorem of
coincidence degree theory [3] to establish the existence of four positive periodic solutions for system (1.1). For the work
concerning the multiple existence of periodic solutions of periodic population models which was done using coincidence
degree theory, we refer to [4–6].
The organization of the rest of this paper is as follows. In Section 2, by employing the continuation theoremof coincidence

degree theory, we establish the existence of four positive periodic solutions of system (1.1). In Section 3, an example is given
to illustrate the effectiveness of our results.

2. Existence of four positive periodic solutions

In this section, by using Mawhin’s continuation theorem, we shall show the existence of positive periodic solutions of
(1.1). To do so, we need to make some preparations.
Let X and Z be real normed vector spaces. Let L : Dom L ⊂ X → Z be a linear mapping and N : X × [0, 1] → Z be

a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if dim Ker L = codim Im L < ∞
and Im L is closed in Z . If L is a Fredholm mapping of index zero, then there exist continuous projectors P : X → X and
Q : Z → Z such that Im P = Ker L and KerQ = Im L = Im (I − Q ), and X = Ker L

⊕
Ker P and Z = Im L

⊕
ImQ . It

follows that L|Dom L∩Ker P : (I − P)X → Im L is invertible and its inverse is denoted by KP . IfΩ is a bounded open subset of X ,
the mapping N is called L-compact on Ω̄ × [0, 1], and if QN(Ω̄ × [0, 1]) is bounded and KP(I − Q )N : Ω̄ × [0, 1] → X is
compact. Because Im Q is isomorphic to Ker L, there exists an isomorphism J : ImQ → Ker L.
The Mawhin’s continuous theorem [3, p. 40] is given as follows.

Lemma 2.1 ([3]). Let L be a Fredholm mapping of index zero and let N be L-compact on Ω̄ × [0, 1]. Assume
(a) for each λ ∈ (0, 1), every solution x of Lx = λN(x, λ) is such that x 6∈ ∂Ω ∩ Dom L;
(b) QN(x, 0)x 6= 0 for each x ∈ ∂Ω ∩ Ker L;
(c) deg(JQN(x, 0),Ω ∩ Ker L, 0) 6= 0.
Then, Lx = N(x, 1) has at least one solution inΩ ∩ Dom L.

For the sake of convenience, we denote f l = mint∈[0,ω] f (t), f M = maxt∈[0,ω] f (t), f̄ = 1
ω

∫ ω
0 f (t)dt; here f (t) is a con-

tinuous ω-periodic function.
Throughout this paper, we need the following assumptions.
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Lemma 2.2. Let x > 0, y > 0, z > 0 and x > 2
√
yz, for the functions f (x, y, z) = x+

√
x2−4yz
2z and g(x, y, z) = x−

√
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2z ,

the following assertions hold.
(1) f (x, y, z) and g(x, y, z) are monotonically increasing and monotonically decreasing on the variable x ∈ (0,∞), respectively.
(2) f (x, y, z) and g(x, y, z) are monotonically decreasing andmonotonically increasing on the variable y ∈ (0,∞), respectively.
(3) f (x, y, z) and g(x, y, z) are monotonically decreasing andmonotonically increasing on the variable z ∈ (0,∞), respectively.

Proof. In fact, for all x > 0, y > 0, z > 0,we have
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