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a b s t r a c t

The problem of decay of a potential vortex in an Oldroyd-B fluid filling the porous
space is studied. The flow problem is first modeled and then solved by employing the
Hankel transform. Analytical expressions of the velocity field and the associated tangential
tension are developed. The well known solutions for a Newtonian fluid as well as those
corresponding to a Maxwell fluid and a second grade one, appear as limiting cases of the
present solutions. Finally, some graphical results describing the influence of porous space
parameters are sketched and interpreted.

© 2009 Published by Elsevier Ltd

1. Introduction

It is well known that the Navier–Stokes equations can describe the flow behaviors of viscous fluids. Such equations are
unable to analyze the rheological characteristics of non-Newtonian fluids. Because of practical applications in industry and
technology the flows of non-Newtonian fluids have been greatly acknowledged in recent times by the physicists, engineers,
modelers, computer scientists and mathematicians as well. The governing equations of non-Newtonian fluids are much
more complicated, higher order [1,2] and pose challenges in coping with the non-linearity of the involved expressions, field
coupling and complex boundary conditions. In view of all these challenges many workers [3–10] have recently engaged
in developing analytical solutions of the problem involving non-Newtonian fluids through various aspects. It is also a
recognized fact that all non-Newtonian fluids cannot be described by a single constitutive equation. Therefore various
constitutive equations of non-Newtonian fluids are suggested in the literature. Motivated by the work of Frohlick and
Sack [11], Oldroyd [12] developed many rate type fluid models. Amongst these the one that is amenable to analysis and
more importantly experimental corroboration is the Oldroyd-B model. This model is able to describe the stress-relaxation,
creep and normal stress differences but it cannot describe shear thinning/shear thickening effects which many polymeric
materials exhibit. It has been shown recently by Rajagopal and Srinivasa [13] that an Oldroyd-B fluid is one which stores
energy like a linearized elastic solid, its dissipation however being due to two dissipative mechanisms that implies that they
arise from a mixture of two viscous fluids [5].

By keeping the above facts in mind our concern in the present investigation is to discuss the decay of a potential
vortex in an Oldroyd-B fluid filling the porous space. Such flow analysis appears to be of special interest in oil reservoir
engineering, where increasing interest is shown in the possibility of improving oil recovery efficiency from water flooding
projects through mobility control with non-Newtonian fluids. Furthermore the flows through porous space occur in packed
bed reactors, petroleum engineering, lungs, boiling in porous media and many others. In this communication the modeled
governing equation is given in Section 2. Expressions of velocity and tangential tension are presented in Section 3. In Section 4
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some existing solutions are recovered. Section 5 includes the graphical results. The graphs for key parameters are sketched
and discussed.

2. Governing equation

The constitutive equations of an Oldroyd-B fluid are

T = −pI+ S, (1)

S+ λ
(dS

dt
− LS− SLT

)
= µ

[
A1 + λr

(dA1

dt
− LA1 − A1LT

)]
(2)

in which T is the Cauchy stress, p the hydrostatic pressure, I the identity tensor, S the extra stress tensor, d/dt the material
derivative, L the velocity gradient, LT the transpose of L,µ the dynamic viscosity, t the time, λ the relaxation time and λr the
retardation time. The expressions for first Rivlin–Ericksen tensor A1 and L are

A1 = L + LT, L = ∇V , (3)

where ∇ is the gradient operator, V the velocity and λ > λr > 0.
The incompressibility condition and equation of motion with no pressure gradient are respectively given as

divV = 0, (4)

ρ
dV
dt
= div S+ R. (5)

Here ρ is the fluid density and R the Darcy resistance in the porous medium.
Our interest lies in the circular motion of an Oldroyd-B fluid through a porous medium therefore the velocity field is

V (r, t) = w (r, t) eθ, (6)

where eθ is the unit vector along the θ direction and the above equation satisfies Eq. (4) automatically. The initial distribution
of the velocity is assumed to be that of a potential vortex of circulation Γ0 [11] i.e.

w (r, 0) = Γ0/ (2πr) . (7)

Substituting Eq. (6) into Eq. (2) and having in mind the initial condition (the fluid is at rest at t = 0)

S (r, 0) = 0 (8)

one has Srr = Srz = Sθz = Szz = 0,(
1+ λ

∂

∂t

)
Sθθ − 2λ

(
∂w

∂r
−

w

r

)
Srθ = −2µλr

(
∂w

∂r
−

w

r

)2

, (9)(
1+ λ

∂

∂t

)
Srθ = µ

(
1+ λr

∂

∂t

)(
∂w

∂r
−

w

r

)
, (10)

and the equation of motion gives

1
r
Sθθ = ρ

w2

r
, (11)

∂Srθ
∂r
+ 2

Srθ
r
= ρ

∂w

∂t
+ Rθ. (12)

In the porous medium, the constitutive relationship between the pressure drop and velocity for an Oldroyd-B fluid is [4](
1+ λ

∂

∂t

)
∇p = −

µφ

k

(
1+ λr

∂

∂t

)
V, (13)

where φ is the porosity of the porous medium and k the permeability. Note that for λ = λr = 0, Eq. (13) reduces to the
classical Darcy’s law. Since the pressure gradient in Eq. (13) is a measure of the flow resistance in the bulk of the porous
medium and R in Eq. (5) is interpreted as the flow resistance offered by the solid matrix, therefore, R satisfies(

1+ λ
∂

∂t

)
R = −

µφ

k

(
1+ λr

∂

∂t

)
V. (14)

From Eqs. (10), (12) and (14), one can write

λ
∂2w (r, t)

∂t2 +
∂w (r, t)

∂t
= ν

(
1+ λr

∂

∂t

)[
∂2

∂r2 +
1
r

∂

∂r
−

1
r2

]
w (r, t)−

νφ

k

(
1+ λr

∂

∂t

)
w (r, t) , (15)

where ν is the kinematic viscosity.
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