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Abstract The non-synonymous SNPs (nsSNPs) in coding re-
gions, neutral or deleterious, could lead to the alteration of the
function or structure of proteins. We have developed the compu-
tational models to analyze the deleterious nsSNPs in the trans-
porters and predict ones in ABCB (ATP-binding cassette B)
transporters of interest. The RPLS (ridge partial least square)
and LDA (linear discriminant analysis) methods were applied
to the problem, by training on a selection of datasets from a spec-
ified source, i.e., human transporters. The best combination of
datasets and prediction attributes was ascertained. The predic-
tion accuracy of the theoretical RPLS model for the training
and testing sets is 84.8% and 80.4%, respectively (LDA:
84.3% and 80.4%), which indicates the models are reasonable
and may be helpful for pharmacogenetics studies.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Single nucleotide polymorphisms (SNPs), which are found

every 200–300 bp, represent the most abundant class of genetic

variations in the human genome [1]. Up to June 17, 2006,

24910873 SNPs have been deposited to public databases

(NCBI dbSNP Build 126) [2]. Non-synonymous SNPs

(nsSNPs), which cause the changes of amino acid residues in

proteins, account for almost half of all DNA mutations and

may be functionally neutral or deleterious [3]. The disease-

causing variations may cause deleterious effects on proteins:

they may inactivate the functional sites or interact sites of

enzymes or impact the folding of proteins; they may signifi-

cantly destabilize the stability of proteins, or change the solu-

bility of proteins [4–6]. Moreover, mutation sites at the N and

C termini (or even within domains) often lead to difficulties in

the protein expression, purification and crystallization [7], and

are hence diseases associated.

Discovering the deleterious mutations is the mainly task of

pharmacogenomics and pharmacogenetics. It is well known

that mining them from dbSNP database is a laborious project

only by site directed mutagenesis experiments and gene knoc-

kout/knockin experiments with more and more nsSNPs data

available. Therefore, a primary challenge currently is that

how to accurately predict those potentially deleterious

nsSNPs. Several groups have tried to evaluate the deleterious

nsSNPs based on 3-dimensional (3D) structure information

of proteins (or homologous structures) in silico. Karchin

et al. considered that the strongest predicting signals in

the lac repressor/lysozyme set were solvent accessibility and

superfamily-level evolutionary conservation [8]. Sunyaev

et al. and Chen et al. also indicated that the residue solvent

accessibility, which could identify the buried residues, was con-

fidently proposed as predictors of deleterious substitutions

[5,9].

However, the theoretical prediction methods for deleterious

nsSNPs are still in its infancy since the 3D structural infor-

mation of most proteins are still unavailable [10–12]. There-

fore, it is a consequentially trend to predict the deleterious

variations of proteins using sequence-based and position-spe-

cific evolutionary information [5,13,14]. The homology-based

algorithm, SIFT (Sorting Intolerant From Tolerant) developed

by Pauline et al. [14,15], was used to predict the conservation

indices of all 20 possible amino acids at a given position

according the ortholog sequences and determine which

nsSNPs would be intolerant variations. Some other methods

based on Site Entropy calculations, relative stability changes

(DDG) were also developed for predicting deleterious nsSNPs

[14,16,17]. These methods based on protein sequence have

been demonstrated that the accuracy is the same as other

methods using tertiary structure information [17].

The relationships between the genotype and phenotype of

nsSNPs in transporters have received a plenty of research

attentions because of their prevalence in the drug responses

and close association to many inherited diseases. Transporters

could medicate a wide range of fundamental biological pro-

cesses, such as the cell signaling, transport of membrane-

impermeable molecules, cell–cell communication, cell adhesion

and recognition [18,19]. The ATP-binding cassette B (ABCB/

MDR/TAP) transporter subfamily includes 11 members and

is unique in mammals in that it contains both the full and half

transporters [20]. Both in vitro and in vivo studies have
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revealed that some nsSNPs in ABCB transporters play a key

role influencing the ADME/T processes (absorption, distribu-

tion, metabolism, excretion and toxicity) of a wide variety of

drugs, and are also one reason to induce the drug–drug inter-

action (DDI) in humans [21]. ABCB1 (MDR1/PGY1), the first

human ABC transporter cloned, could transport several hun-

dreds drugs and confer cancer multidrug resistance [22]. The

nsSNPs of ABCB4 and ABCB11, located in the liver, are

mainly reasons for the deregulation of the hepatobiliary circu-

lation and correlative diseases with the cholestasis [23]. The

variations of ABCB2 (TAP1) and ABCB3 (TAP2) proteins

could lead to immunodeficiency [24,25]. The variations of four

half transporters, ABCB6, ABCB7, ABCB8, and ABCB10,

localized in the mitochondria and involved in iron metabolism,

could baffle the transport of Fe/S complex into cytoplasm [26].

ABCB5, a novel drug transporter and chemoresistance media-

tor, determines the membrane potential and regulates the cell

fusion in the physiologic skin progenitor cells [27]. The ABCB9

half transporter, which is the closest homolog of the TAPs, has

been localized to lysosomes [26]. The wealth of pharmcogenet-

ical studies revealed that most common diseases clusters, such

as the ulcerative colitis (UC), progressive familial intrahepatic

cholestasis (PFIC) syndromes, systemic lupus erythematosus

(SLE), rheumatoid arthritis (RA), ankylosing spondylitis, sid-

eroblastic anemia, insulin-dependent diabetes mellitus, chol-

estatic liver and so on, are partially responsible for the

variations of ABCB transporters, more information as shown

in (http://www.tcdb.org/disease_explore.php) [21–27]. With

increasing knowledge of the properties of ABCB transporters

now, it is feasible to predict the phenotype of an nsSNP from

the genotype by in silico methods.

Deleterious nsSNPs analyses for the transporters have not

been estimated computationally till now, although they have

received great focus from experimental researchers. Therefore,

in this work, the computational models were built to analyze

the deleterious nsSNPs in the transporters, and were used to

predict the deleterious ones in the ABCB subfamily. Up to

our knowledge, it is still difficult to obtain the whole 3D struc-

ture information of most human transporters, including the

ABCB transporters, thus resulting in the difficulties of building

computational models based on their 3D structures. In order

to overcome the barriers, we have developed sequence-based

models combined with some predicted structure information

for all transporters in the datasets. The testing sets including

121 nsSNPs of ABCB transporters and the training sets inclu-

ding 762 nsSNPs of other transporters were carefully built, and

a ridge partial least square (RPLS) analysis derived tool has

been applied to predict the disease-causing variations in the

datasets. As a comparison to the RPLS, the linear discriminant

analysis (LDA) method has also been used in building models.

2. Materials and methods

2.1. Datasets
All the transporter IDs were collected from the TCDB database with

classification information (http://www.tcdb.org/hgnc_explore.php), the
detailed description about polymorphism and protein sequence were
obtained by the Swiss-Prot database [28] and NCBI human genome
protein sequence [2].

The databases of Swiss-Prot sequence variants provide full inform-
ation of classification about nsSNPs associated with a given Swiss-Prot
entry (Release 49.1 of 21-Feb-2006) [28]. All the variants in the data-

base are therefore labeled as disease, unclassified or polymorphism,
respectively, which have been demonstrated by a variety of reports
[28]. Mutations in transporters labeled as disease or polymorphism
used in this work were collected from the Swiss-Prot database. The
mapped nsSNP was kept where the amino acid was the same in both
the Swiss-Prot protein sequence and the NCBI human genome protein
sequence [2]. All the transporters applied in this work lack the whole
3D structure information, which is limited from 350 to 1500 amino
acids in length. The length restriction of sequence in training sets
is made to build a more reasonable dataset, since all the ABC trans-
porters (testing sets) are relatively large proteins, ranging from 686
to 1321, as shown in Table 1.

2.1.1. Training sets.
I. Deleterious variations dataset: 540 nsSNPs were collected from 50

transporters of five families (Table 2). Deleterious variations were
labeled as disease in the Swiss-Prot database.

II. Neutral variations dataset: 222 nsSNPs were collected from 88
transporters of eight families (Table 2). Neutral variations were la-
beled as polymorphism in Swiss-Prot database.

2.1.2. Testing sets. One hundred and twenty-one nsSNPs in ABCB
transporters were extracted from the above databases and literature
[2,21–29]. In this dataset, the 56 nsSNPs have already been known
as phenotypes, neutral and deleterious according to the literature
information, as shown in Table 1.

2.2. Candidate features
2.2.1. Evolutionary-conservation features.
I. SIFT score. PSI-BLAST in SIFT was used to search against the

EMBL non-redundant protein database for homologous sequences
and to build a multiple sequence alignment (MSA). It could compute
the frequency of the amino acid a occurring at position i (fia) in MSA.
The fia is given as a score ranging from 0.0 to 1.0, and the nsSNP
whose score is less than 0.05 is considered to be deleterious. A median
sequence conservation score of 63.25 is considered as reasonable accu-
racy and the correspondingly sequence diversity is adequate. In gen-
eral, for the protein sequence, SIFT performs MSA until a median
sequence conservation score for the sequence is reached at the default
of 3.0 and whether a substitution with any of the other amino acids is

Table 1
Distribution of nsSNPs in ABCB transporters

Member Length(Aa) Pro_ID No. nsSNP

ABCB1 1280 2506118 28 (18)
ABCB2 808 9665248 16 (8)
ABCB3 686 549044 16 (3)
ABCB4 1279 126932 13 (9)
ABCB5 812 36413607 4 (0)
ABCB6 842 13123949 6 (0)
ABCB7 752 8928549 7 (5)
ABCB8 718 6005804 6 (1)
ABCB9 766 22095458 2 (1)
ABCB10 738 22095459 2 (1)
ABCB11 1321 12643301 21 (10)

No. nsSNP means the number of the nsSNPs in ABCB transporters.
The number in each bracket refers to the number of neutral or del-
eterious nsSNPs already known according to Swiss-Prot or literatures.

Table 2
The families of the 138 transporters in the training sets

Human transporter
family

Deleterious training set Neutral training set

Members Members

Potassium channels 10 11
Calcium channels 0 2
Annexins 0 1
Sodium channels 24 42
Solute carriers 8 17
ATPase 6 8
Amino acid

transporters
2 4

Others 0 3
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