ELSEVIER

Contents lists available at ScienceDirect

Fungal Ecology

journal homepage: www.elsevier.com/locate/funeco

Short Communication

Shared weapons in fungus-fungus and fungus-plant interactions? Volatile organic compounds of plant or fungal origin exert direct antifungal activity *in vitro*

Elizabeth Quintana-Rodriguez ^{a, 3}, L.Enrique Rivera-Macias ^{a, 4}, Rosa M. Adame-Alvarez ^{a, 2}, Jorge Molina Torres ^{b, 5}, Martin Heil ^{a, *, 1, 6}

ARTICLE INFO

Article history: Received 14 May 2017 Received in revised form 20 January 2018 Accepted 28 February 2018

Corresponding Editor: John Dighton

Keywords: Antifungal effects Plant-fungus interaction Plant resistance VOCs Volatiles Phytopathogen

ABSTRACT

Fungi emit a diverse blend of volatile organic compounds (VOCs) that mediate multiple fungus-fungus interactions. Plants emit VOCs as well, which can serve as resistance-inducing signals but might also act as direct resistance agents. We screened 22 VOCs that are emitted from infected plants for putative inhibitory effects on three fungal phytopathogens: *Colletotrichum lindemuthianum*, *Fusarium oxysporum* and *Botrytis cinerea*. The growth of all three fungi was significantly inhibited when the mycelia were exposed to an atmosphere containing nonanal, (+)-carvone, citral, *trans*-2-decenal, *L*-linalool, or nerolidol. Eugenol completely inhibited the growth of all three fungi, and 1-octen-3-ol, nonanal, 2,6-dimethyl-2,4,6-octatriene, citral, α -terpineol and *trans*-2-decanal inhibited at least one fungus completely. Most of these VOCs are also emitted from fungi. We conclude that antagonistic fungus-fungus and plant-fungus interactions might share common mechanisms and that plant VOCs can function as resistance agents that fungal pathogens must overcome for successful infection.

© 2018 Elsevier Ltd and British Mycological Society. All rights reserved.

Fungi emit a diverse array of volatile organic compounds (VOCs): low-weight, lipophilic molecules that play multiple roles in fungus-fungus or fungus-plant interactions (Bennett and Inamdar, 2015; El Ariebi et al., 2016). On the one hand, fungal VOCs serve as 'chemical weapons' in antagonistic fungus-fungus interactions (Bennett and Inamdar, 2015). On the other hand, multiple fungi colonize plants (Partida-Martinez and Heil, 2011), and VOC-mediated growth promotion effects have been reported for various fungal species, particularly in the genus *Trichoderma* (Hung et al., 2013; Lee et al., 2016; Li et al., 2016). However, plants emit

E-mail address: mheil@ira.cinvestav.mx (M. Heil).

VOCs as well, for example in response to infection, and several of these compounds act as signals and trigger the expression of plant resistance genes (Scala et al., 2013; Heil, 2014). For example, nonanal and methyl salicylate primed pathogenesis-related (PR) genes in common bean (*Phaseolus vulgaris*) and lima bean (*Phaseolus lunatus*) (Yi et al., 2009; Quintana-Rodriguez et al., 2015), and the exposure to (S)-(—) limonene, L-linalool, nonanal, methyl salicylate, or methyl jasmonate, induced resistance in *P. vulgaris* to the fungal pathogen, *Colletotrichum lindemuthianum*. Interestingly, the same compounds inhibited the growth of the fungus *in vitro* (Quintana-Rodriguez et al., 2015), thereby supporting theoretical predictions that a direct defensive function of a compound should precede its signalling function in evolutionary trajectories (Maag et al., 2015; Veyrat et al., 2016).

However, the effects of plant-derived VOCs on fungi range from inhibition to promotion. *Trans*-2-hexenal inhibited the conidial germination of *Monilinia laxa* (Neri et al., 2007) and citral inhibited the growth of *Botrytis cinerea*, *Trichoderma viride* and *Penicillium digitatum* (Simas et al., 2017). By contrast, *Uromyces fabae* stimulated volatile emissions from its host plant and among the emitted

^a Departamento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico

^b Departamento de Biotecnología y Bioquímica, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico

^{*} Corresponding author. Departamento de Ingeniería Genética, Km 9.6 Libramiento Norte, Irapuato, Guanajuato 35821, Mexico.

www.ira.cinvestav.mx/Dr.MartinHeil.aspx

www.facebook.com/plantecology/

³ www.researchgate.net/profile/Elizabeth_Quintana-Rodriguez2

⁴ www.researchgate.net/profile/Luis_Rivera_Macias

www.researchgate.net/profile/Jorge_Molina-Torres

www.researchgate.net/profile/MartinHeil_2

Table 1Volatile organic compounds of fungal or plant origin with inhibitory effects on fungi.

Compound	CAS Nr.	Structure	Fungus inhibited ^a	Fungi and plants as source			
				Fungal source	Reference	Plant source	Reference
Ethanol	64-17-5	∕ОН	F	Trichoderma sp., Tuber sp., common in yeasts	Hung et al. (2013); Ebert et al. (2016) Lee et al. (2016); Li et al. (2016)		
trans-2-Hexen-1-al	6728-26-3	H ₃ C H	В		(2000), 2000 and (2000)	Arabidopsis thaliana infected with Botrytis cinerea	Matsui et al. (2012)
cis-2-Hexen-1-ol	928-94-9	H₃C H H	F,B			P. vulgaris infected with Pseudomonas syringae	Croft et al. (1993)
1-Octen-3-ol	3391-86-4	CH ₃ (CH ₂) ₃ CH ₂ CH ₂	F,B	"Possibly the most widespread fatty acid derived fungal volatile"	Müller et al. (2013); Li et al. (2016); Dickschat (2017)	P. vulgaris infected with C. lindemuthianum	Quintana-Rodriguez et al. (2015)
α-Terpinene	99-86-5	CH ₃	F,B	"Emitted from fungi"	Schmidt et al. (2016)	Tomato infected with Tomato severe rugose virus	Fereres et al. (2016)
(–) β-Pinene	18172-67-3	H ₃ C CH ₃	F,B	Trichoderma sp.	Lee et al. (2016)	P. vulgaris infected with C. lindemuthianum	Quintana-Rodriguez et al. (2015)
(S)-(–)-Limonene	5989-54-8	H ₂ C CH ₃	С	'Limonene': <i>Trichoderma</i> sp., interacting fungi	Hung et al. (2013); El Ariebi et al. (2016); Lee et al. (2016)	P. vulgaris infected with C. lindemuthianum	Quintana-Rodriguez et al. (2015)
2,6 – Dimethyl – 2,4,6 – octatriene	673-84-7	H ₃ C CH ₃ CH ₃	В			P. vulgaris infected with C. lindemuthianum	Quintana-Rodriguez (unpubl.)
cis-3-Hexenyl acetate	3681-71-8	H_3C O H H CH_3	F			P. lunatus (md or colonized with EF)	Navarro-Melendez and He (2014)
Nonanal	124-19-6	O CH ₃ (CH ₂) ₆ CH ₂ H	C,F,B	Trichoderma sp.	Hung et al. (2013); Lee et al. (2016)	P. vulgaris infected with C. lindemuthianum, P. lunatus treated with BTH	Yi et al. (2009); Quintana- Rodriguez et al. (2015)
(+)- Carvone	2244-16-8	CH₃ O	C,F,B			Brassica oleracea treated with jasmonic acid, Cucumis sativus infested with spider mite	Bruinsma et al. (2009); Kappers et al. (2010)
		H ₂ C CH ₃					

Download English Version:

https://daneshyari.com/en/article/8384230

Download Persian Version:

https://daneshyari.com/article/8384230

<u>Daneshyari.com</u>