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Abstract

We are concerned with a system of nonlinear partial differential equations modeling the Lotka–Volterra interactions of predators
and preys in the presence of prey-taxis and spatial diffusion. The spatial and temporal variations of the predator’s velocity are
determined by the prey gradient. We prove the existence of weak solutions by using Schauder fixed-point theorem and uniqueness
via duality technique. The linearized stability around equilibrium is also studied. A finite volume scheme is build and numerical
simulation show interesting phenomena of pattern formation.
� 2007 Elsevier Ltd. All rights reserved.

MSC: 35K57; 35K55; 92B05

Keywords: Reaction–diffusion system; Predator–prey; Prey-taxis; Finite volume scheme

1. Introduction

This work is concerned with the mathematical and numerical analysis of a system of partial differential equations
of reaction–diffusion–advection system. This system describes the local interactions of predators and preys with prey-
taxis. Prey-taxis is a direct movement of predators in response to a variation of prey. In this paper we assume that, locally
(i.e., at each point and each instant), predators attack preys following the familiar Lotka–Volterra interaction. Spatial
dispersal of the prey is pure diffusion and the spatial-temporal variations of the predator’s velocity are determined by
the prey gradient. Several field studies measuring characteristics of individual movement confirm the basic hypothesis
about the dependence of acceleration on a stimulus gradient (see [13] for instance). Understanding spatial and temporal
behaviors of interacting species in ecological system is a central problem in population ecology. Various types of
mathematical models have been proposed to study problems of coexistence or exclusion of competing species. The
appearance of advection-driven heterogeneity in relation to single and multispecies ecological interactions was studied
by Levin [7], Levin and Segel [8], Okubo [12], Mimura and Murray [10], Mimura and Kawasaki [9], Mimura and
Yamaguti [11], and many other authors. In passing, we mention that in [2] (see also [4]) the authors have considered the
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interaction of two species assuming that both species attract the other by some devise. These studies form a theoretical
basis for modeling complex spatio-temporal dynamics observed in real systems. Moreover, from mathematical point
of view these models have a structure and remains very challenging.

Let first u=u(t, x) and v(t, x) represent the predator and prey population densities respectively at time t and position
x. Let r > 0 be the natural growth rate of prey, K be the carrying capacity, and let −a (a > 0) be the natural exponential
decay of the predator population. Then, we assume the logistical growth rate of prey reads k(v) = rv(1 − (v/K))

and the predation rate reads �(v) = pv/(1 + qv) with 1/p the time spent by a predator to catch a prey and q/p the
manipulation time, offering a saturation effect for large densities of preys when q > 0. Last, e being the conversion rate
from prey to predator.

Our model that governs the dynamics of a predator and prey system with prey-taxis is the following reaction–
diffusion–advection system{�t u − d1�u + div(u�(u)∇v) = −au + e�(v)u in QT ,

�t v − d2�v = k(v) − �(v)u,
(1.1)

where QT := � × (0, T ), T > 0 is a fixed time, and � is a bounded domain in RN , with smooth boundary �� and
outer unit normal �.

We augment (1.1) with no-flux boundary conditions on �T := �� × (0, T ),

�u

��
= 0,

�v

��
= 0, (1.2)

and initial distributions in �

u(x, 0) = u0(x), v(x, 0) = v0(x). (1.3)

In the model above, d1 > 0 and d2 > 0 are their diffusion rates.
The predators are attracted by the preys and � denotes their prey-tactic sensitivity. In this work, we assume at first

that there exists a maximal density of predators, the threshold um, such that �(um) = 0. Intuitively, this amounts to
a switch to repulsion at high densities, sometimes referred to as volume-filling effect or prevention of overcrowding
(see [5]). We refer also to [3] for some work in that direction for degenerate diffusion. This threshold condition has a
clear biological interpretation: the predators stop to accumulate at a given point of � after their density attains certain
threshold values and the prey-tactic cross diffusion h(u) = u�(u) vanishes identically when u�um.

In this work we assume that the function � in (1.1) satisfies

� ∈ C2([0, 1]) and �(um) = 0. (1.4)

Before stating our main results, we give the definition of a weak solution.

Definition 1.1. A weak solution of (1.1)–(1.3) is a pair (u, v) of functions satisfying the following conditions,
u(t, x)�0 and v(t, x)�0, for a.e. (t, x) ∈ QT ,

u ∈ L∞(QT ) ∩ L2(0, T ; H 1(�)) ∩ C(0, T , L2(�)),

�t u ∈ L2(0, T ; (H 1(�))′), u(0) = u0,

v ∈ L∞(QT ) ∩ Lp(0, T ; W 2,p(�)) ∩ C(0, T , L2(�)) for all p > 1,

�t v ∈ L2(QT ), v(0) = v0, (1.5)

and, for all �, � ∈ L2(0, T ; H 1(�)),⎧⎪⎪⎨
⎪⎪⎩

∫ T

0 〈�t u, �〉 dt + ∫∫
QT

d1∇u · ∇� − u�(u)∇v · ∇� dx dt

= ∫∫
QT

(−a + e�(v))u� dx dt,∫∫
QT

�t v� + d2∇v · ∇� dx dt = ∫∫
QT

(k(v) − �(v)u)� dx dt,

(1.6)

where 〈·, ·〉 denotes the duality pairing between H 1(�) and (H 1(�))′.
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