A reaction-diffusion system modeling predator-prey with prey-taxis

Bedr'Eddine Ainseba ${ }^{\text {a }}$, Mostafa Bendahmane ${ }^{\mathrm{b}, *}$, Ahmed Noussair ${ }^{\mathrm{c}}$
${ }^{a}$ Univesité Victor Segalen Bordeaux 2 IMB, UMR CNRS 5251 and INRIA Futurs Bordeaux, France
${ }^{\mathrm{b}}$ Departamento de Ingenieria Matematica Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
${ }^{\text {c }}$ Universite Bordeaux 1, IMB, 351 cours de la Libération, 33400 Talence, France

Received 2 May 2007; accepted 29 June 2007

Abstract

We are concerned with a system of nonlinear partial differential equations modeling the Lotka-Volterra interactions of predators and preys in the presence of prey-taxis and spatial diffusion. The spatial and temporal variations of the predator's velocity are determined by the prey gradient. We prove the existence of weak solutions by using Schauder fixed-point theorem and uniqueness via duality technique. The linearized stability around equilibrium is also studied. A finite volume scheme is build and numerical simulation show interesting phenomena of pattern formation.

© 2007 Elsevier Ltd. All rights reserved.
MSC: 35K57; 35K55; 92B05
Keywords: Reaction-diffusion system; Predator-prey; Prey-taxis; Finite volume scheme

1. Introduction

This work is concerned with the mathematical and numerical analysis of a system of partial differential equations of reaction-diffusion-advection system. This system describes the local interactions of predators and preys with preytaxis. Prey-taxis is a direct movement of predators in response to a variation of prey. In this paper we assume that, locally (i.e., at each point and each instant), predators attack preys following the familiar Lotka-Volterra interaction. Spatial dispersal of the prey is pure diffusion and the spatial-temporal variations of the predator's velocity are determined by the prey gradient. Several field studies measuring characteristics of individual movement confirm the basic hypothesis about the dependence of acceleration on a stimulus gradient (see [13] for instance). Understanding spatial and temporal behaviors of interacting species in ecological system is a central problem in population ecology. Various types of mathematical models have been proposed to study problems of coexistence or exclusion of competing species. The appearance of advection-driven heterogeneity in relation to single and multispecies ecological interactions was studied by Levin [7], Levin and Segel [8], Okubo [12], Mimura and Murray [10], Mimura and Kawasaki [9], Mimura and Yamaguti [11], and many other authors. In passing, we mention that in [2] (see also [4]) the authors have considered the

[^0]interaction of two species assuming that both species attract the other by some devise. These studies form a theoretical basis for modeling complex spatio-temporal dynamics observed in real systems. Moreover, from mathematical point of view these models have a structure and remains very challenging.

Let first $u=u(t, x)$ and $v(t, x)$ represent the predator and prey population densities respectively at time t and position x. Let $r>0$ be the natural growth rate of prey, K be the carrying capacity, and let $-a(a>0)$ be the natural exponential decay of the predator population. Then, we assume the logistical growth rate of prey reads $k(v)=r v(1-(v / K))$ and the predation rate reads $\pi(v)=p v /(1+q v)$ with $1 / p$ the time spent by a predator to catch a prey and q / p the manipulation time, offering a saturation effect for large densities of preys when $q>0$. Last, e being the conversion rate from prey to predator.

Our model that governs the dynamics of a predator and prey system with prey-taxis is the following reaction-diffusion-advection system

$$
\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u+\operatorname{div}(u \chi(u) \nabla v)=-a u+e \pi(v) u \text { in } Q_{T}, \tag{1.1}\\
\partial_{t} v-d_{2} \Delta v=k(v)-\pi(v) u,
\end{array}\right.
$$

where $Q_{T}:=\Omega \times(0, T), T>0$ is a fixed time, and Ω is a bounded domain in \mathbb{R}^{N}, with smooth boundary $\partial \Omega$ and outer unit normal η.
We augment (1.1) with no-flux boundary conditions on $\Sigma_{T}:=\partial \Omega \times(0, T)$,

$$
\begin{equation*}
\frac{\partial u}{\partial \eta}=0, \quad \frac{\partial v}{\partial \eta}=0 \tag{1.2}
\end{equation*}
$$

and initial distributions in Ω

$$
\begin{equation*}
u(x, 0)=u_{0}(x), \quad v(x, 0)=v_{0}(x) \tag{1.3}
\end{equation*}
$$

In the model above, $d_{1}>0$ and $d_{2}>0$ are their diffusion rates.
The predators are attracted by the preys and χ denotes their prey-tactic sensitivity. In this work, we assume at first that there exists a maximal density of predators, the threshold u_{m}, such that $\chi\left(u_{m}\right)=0$. Intuitively, this amounts to a switch to repulsion at high densities, sometimes referred to as volume-filling effect or prevention of overcrowding (see [5]). We refer also to [3] for some work in that direction for degenerate diffusion. This threshold condition has a clear biological interpretation: the predators stop to accumulate at a given point of Ω after their density attains certain threshold values and the prey-tactic cross diffusion $h(u)=u \chi(u)$ vanishes identically when $u \geqslant u_{m}$.

In this work we assume that the function χ in (1.1) satisfies

$$
\begin{equation*}
\chi \in C^{2}([0,1]) \quad \text { and } \quad \chi\left(u_{m}\right)=0 \tag{1.4}
\end{equation*}
$$

Before stating our main results, we give the definition of a weak solution.
Definition 1.1. A weak solution of (1.1)-(1.3) is a pair (u, v) of functions satisfying the following conditions, $u(t, x) \geqslant 0$ and $v(t, x) \geqslant 0$, for a.e. $(t, x) \in Q_{T}$,
$u \in L^{\infty}\left(Q_{T}\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) \cap C\left(0, T, L^{2}(\Omega)\right)$,
$\partial_{t} u \in L^{2}\left(0, T ;\left(H^{1}(\Omega)\right)^{\prime}\right), \quad u(0)=u_{0}$,
$v \in L^{\infty}\left(Q_{T}\right) \cap L^{p}\left(0, T ; W^{2, p}(\Omega)\right) \cap C\left(0, T, L^{2}(\Omega)\right) \quad$ for all $p>1$,
$\partial_{t} v \in L^{2}\left(Q_{T}\right), \quad v(0)=v_{0}$,
and, for all $\varphi, \psi \in L^{2}\left(0, T ; H^{1}(\Omega)\right)$,

$$
\left\{\begin{array}{l}
\int_{0}^{T}\left\langle\partial_{t} u, \varphi\right\rangle \mathrm{d} t+\iint_{Q_{T}} d_{1} \nabla u \cdot \nabla \varphi-u \chi(u) \nabla v \cdot \nabla \varphi \mathrm{~d} x \mathrm{~d} t \tag{1.6}\\
\quad=\iint_{Q_{T}}(-a+e \pi(v)) u \varphi \mathrm{~d} x \mathrm{~d} t \\
\int_{Q_{T}} \partial_{t} v \psi+d_{2} \nabla v \cdot \nabla \psi \mathrm{~d} x \mathrm{~d} t=\iint_{Q_{T}}(k(v)-\pi(v) u) \psi \mathrm{d} x \mathrm{~d} t
\end{array}\right.
$$

where $\langle\cdot, \cdot\rangle$ denotes the duality pairing between $H^{1}(\Omega)$ and $\left(H^{1}(\Omega)\right)^{\prime}$.

https://daneshyari.com/en/article/838504

Download Persian Version:

https://daneshyari.com/article/838504

Daneshyari.com

[^0]: * Corresponding author. Tel.: +5641 2203129; fax: +5641 2522055.

 E-mail addresses: bea@sm.u-bordeaux2.fr (B.E. Ainseba), mostafab@ing-mat.udec.cl (M. Bendahmane), noussair@math.u-bordeaux. fr (A. Noussair).

