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a b s t r a c t

In this paper, we present a two-dimensional autonomous dynamical system modeling a
predator–prey food chainwhich is based on amodified version of the Leslie–Gower scheme
and on the Holling-type II scheme with state dependent impulsive effects. By using the
Poincaré map, some conditions for the existence and stability of semi-trivial solution and
positive periodic solution are obtained. Numerical results are carried out to illustrate the
feasibility of our main results.
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1. Introduction

In the last few decades, impulsive differential equations (IDEs) have been extensively used as models in biology, physics,
chemistry, engineering and other sciences, with particular emphasis on population dynamics. Many evolution processes
in nature are submitted to short temporary perturbations that are negligible compared to the process duration. These
short-time perturbations are often assumed to be in the form of impulses in the modeling process. Consequently, IDEs
provide a natural description of such processes. In recent years, some IDEs have been introduced in population dynamics
(see [1–14] and references therein), such as vaccination, chemotherapeutic treatment of disease, chemostat, birth pulse,
control and optimization, etc. The majority of them just concern the systems with impulses at fixed times. However,
impulsive state feedback control strategy is used widely in real life problems. In practical ecological systems, the control
measures (by catching, poisoning or releasing the natural enemy, etc.) are taken only when the amount of species reaches a
threshold value, rather than the usual impulsive fixed-time control strategy. Recently, a few studies on IDEs with state-
dependent impulsive effects were made in [15,16,4,17–20]. In particular, Jiang and Lu [15,16] obtained the sufficient
conditions of existence and stability of semi-trivial solution, and positive periodic solution for some systems by using the
Poincaré map.
On the other hand, a two-dimensional system of autonomous differential equations modeling a predator–prey system,

which incorporates a modified version of the Leslie–Gower functional response, that is the Holling-type II. The system
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describes a prey population xwhich serves as food for a predator y, and it can be written as follows:
dx(t)
dt
=

[
r1 − b1x(t)−

a1y(t)
x(t)+ k1

]
x(t)

dy(t)
dt
=

[
r2 −

a2y(t)
x(t)+ k2

]
y(t),

(1.1)

where x and y represent the population densities at time t; b1, ri, ai and ki (i = 1, 2) are model parameters assuming
only positive values. The dynamic behaviors for system (1.1) with impulsive effects at fixed times or not, which have been
studied extensively in the literature. For example, Aziz-Alaoui [21] and Nindjin [22] studied system (1.1) and obtained
the sufficient condition for boundedness of solutions, existence of an attracting set and global stability of the coexisting
interior equilibrium, and Song [2] and Liu [10] considered system (1.1) with impulsive effects at fixed times and established
the conditions for the linear stability of trivial periodic solution and semi-trivial periodic solutions, the permanence and
existence of a stable pest-eradication periodic solution.
Motivated by the above works, in this paper, we consider the dynamic behaviors for system (1.1) with state dependent

impulsive effects. The system is modeled by the following equations:

dx(t)
dt
=

[
r1 − b1x(t)−

a1y(t)
x(t)+ k1

]
x(t)

dy(t)
dt
=

[
r2 −

a2y(t)
x(t)+ k2

]
y(t)

 x 6= h,

1x(t) = x(t+)− x(t) = −px(t)
1y(t) = y(t+)− y(t) = qy(t)+ α

}
x = h,

(1.2)

where h ∈ (0, ∞), p ∈ (0, 1) and q ∈ (−1, ∞).When the amount of the prey reaches the threshold h at time th, controlling
measures are taken and the amount of prey and predator abruptly turn to (1− p)h and (1+ q)y(th)+ α, respectively.
This paper is organized as follows. In the next section, as preliminaries, we present some basic definitions, two Poincaré

maps and an important lemma. In Section 3, we state and prove a general criterion for the semi-trivial periodic solution and
positive periodic solution. Some specific examples are given to illustrate our results in the last section.

2. Preliminaries

The dynamic behaviors for system (1.1) clearly have an unstable focus (0, 0) and two saddle (r1/b1, 0) and (0, r2k2/a2)
and one locally stable focus (x∗, y∗) under the following condition

(H) r1 ≤ r2, k1 ≥ k2 and r2k2/a2 < r1k1/a1,

where

x∗ =
1

2a2b1

{
−(a1r2 − a2r1 + a2b1k1)+ [(a1r2 − a2r1 + a2b1k1)2 − 4a2b1(a1r2k2 − a2r1k1)]

1
2

}
, (2.1)

y∗ =
r2(x∗ + k2)

a2
.

Throughout in this paper, we assume that (H) is held. By the biological background of system (1.2), we only consider
system (1.2) in the biological meaning region D = {(x, y) : x ≥ 0, y ≥ 0}. Obviously, the global existence and uniqueness of
solutions of system (1.2) are guaranteed by the smoothness properties of f , which denotes themapping defined by right-side
of system (1.2) — for details see Lakshmikantham et al. [23], Bainov and Simeonov [24].
Set R = (−∞, ∞). First, we give the notion of the distance between a point and a set. It is defined as follows. Let

S ∈ R2 = {(x, y) : x ∈ R, y ∈ R} be an arbitrary set and P ∈ R2 be an arbitrary point. Then the distance between the point P
and the set S is denoted by

d(P, S) = inf
P0∈S
|P − P0|.

Let z(t) = (x(t), y(t)) be any solution of (1.2). Next, we define the positive orbit through the point z0 ∈ R2+ = {(x, y) : x ≥ 0,
y ≥ 0} for t ≥ t0 as:

O+(z0, t0) = {z ∈ R2+ : z = z(t), t ≥ t0, z(t0) = z0}.

In order for the convenience of statement, in the rest of this paper, we introduce the definitions:

Definition 2.1 (Orbital Stability). z∗(t) is said to be orbitally stable, if given ε > 0, there exists δ = δ(ε) > 0 such that, for
any other solution, z(t), of system (1.2) satisfying |z∗(t0)− z(t0)| < δ, then d(z(t),O+(z0, t0)) < ε for t > t0.
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