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a b s t r a c t

Analytical solutions to autonomous, nonlinear, third-order nonlinear ordinary differential
equations invariant under time and space reversals are first provided and illustrated
graphically as functions of the coefficients that multiply the term linearly proportional to
the velocity and nonlinear terms. These solutions are obtained bymeans of transformations
and include periodic as well as non-periodic behavior. Then, five approximation methods
are employed to determine approximate solutions to a nonlinear jerk equation which has
an analytical periodic solution. Three of these approximatemethods introduce a linear term
proportional to the velocity and a book-keeping parameter and employ a Linstedt–Poincaré
technique; one of these techniques provides accurate frequencies of oscillation for all the
values of the initial velocity, another one only for large initial velocities, and the last one
only for initial velocities close to unity. The fourth and fifth techniques are based on the
Galerkin procedure and the well-known two-level Picard’s iterative procedure applied in a
global manner, respectively, and provide iterative/sequential approximations to both the
solution and the frequency of oscillation.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Third-order, autonomous, nonlinear, ordinary differential equations are also known as jerk equations because the
derivative of the acceleration with respect to time is referred to as the ‘‘jerk’’ [1,2], may have periodic or limit cycle
solutions [3,4] and may exhibit chaos [5–7] because their phase space is three-dimensional.
Although, some authors [8,9] have in the past questioned whether there are any useful applications of third-order

differential equations in physics based on the fact that most of the fundamental equations in physics are second-order
ordinary or partial differential equations, e.g., Newton’s second law, the Schrödinger equation, Einstein’s field equations,
etc., it must be noted that differentiation of a second-order ordinary differential equation with respect to the independent
variable results in a (Newtonian) jerk equation which is of mathematical but not physical interest.
Mathematical studies of third-order nonlinear ordinary differential equations include those of Tunç [10] who proved the

stability and boundedness of solutions of nonlinear vector differential equations by means of Lyapunov’s second method,
Ezeilo [11–13], Rao [14], Reissig et al. [15], Tunç and Ateş [16], etc. On the other hand, mathematical modelling of several
physical phenomena sometimes result in third-order nonlinear ordinary differential equations. For example, Rauch [17]
analyzed a nonlinear third-order ordinary differential equation that models the current in a vacuum tube circuit where
the nonlinearities arise from the nonlinear characteristics of the tube, and investigated both periodic and quasi-periodic
responses. Friedrichs [18] also consideredmodels of vacuumtube circuits that aremodelled bymeans of third-order ordinary
differential equations, whereas Sherman [19] analyzed third-order ordinary differential equations that model the dynamics
of nuclear spin generators.
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Third-order ordinary differential equations also appear in models of thermo-mechanical oscillators in fluids [22],
transverse motions of piano strings [21], interactions between an elastic sphere and a surrounding fluid [20], vibrations
of a mass attached to two horizontal strings and subject to aerodynamic forces [23], control systems [24,25], etc.
According to Gottlieb [3,4], the most general nonlinear jerk equation which is invariant under time- and displacement-

reversals is
...
x = −γ ẋ− αẋ3 − βx2ẋ+ δxẋẍ− εẋẍ2, (1)

where the dot denotes differentiationwith respect to t andα,β , γ , δ and ε are constants, and, at least, one ofβ , δ and ε should
be different from zero. In addition, if ε = 0, it is required that δ 6= −2α so that the jerk equation is not the time-derivative
of a second-order ordinary differential equation.
Gottlieb [3,4] provided solutions to Eq. (1) for (α, β, γ , δ, ε) = (0, 0, 1, 1, 0), (0, 0, 1, 0, 1) and (1, 1, 0, 0, 0) in his

Examples 1–3, respectively, for x(0) = 0, ẋ(0) = b and ẍ(0) = 0. Gottlieb [3,4] also obtained an approximate periodic
solution to Eq. (1) by means of a first-order harmonic balance procedure. Wu et al. [26] considered the third example
treated by Gottlieb [3] and provided approximate solutions whichwere obtained bymeans of a linearized harmonic balance
procedure, whereas Hu [27] also considered Gottlieb’s Example 3 and obtained approximate solutions based on the use of
parameter perturbation method which makes use of the Linstedt–Poincaré technique and expands both the solution and
γ = 0 in Eq. (1) in terms of an artificial or book-keeping parameter. Ma et al. [28] have also considered Gottlieb’s Example 3,
introduced the linear stiffness term λẋ with λ = 1 in both sides of Eq. (1) and obtained approximate solutions to both the
solution and the frequency of oscillation by expanding x(t) and λ in power series of an artificial parameter.
In this paper, some analytical solutions to Eq. (1) are first provided for the following initial conditions

x(0) = a, ẋ(0) = b, ẍ(0) = c, (2)

where a, b and c are constant, and for a variety of values of (α, β, γ , δ, ε). These analytical solutions are obtained by means
of appropriate transformations and some result in the well-known Bernoulli and Riccati equations. The solutions reported
here include those that diverge as time tends to infinitywhichmay not be relevant in nonlinear dynamics, aswell as periodic
solutions, and complement the periodic solutions previously obtained by Gottlieb [3]. Some of these analytical solutions are
illustrated in order to exhibit the effects of the parameters (α, β, γ , δ, ε) on the solution. The paper then presents five
approximate solutions to Gottlieb’s third example [3]. Three of these approximate techniques make use of an artificial
parameter and the Linstedt–Poincaré method; the first of these techniques introduces both a term linearly proportional
to the velocity in both sides of and an artificial parameter in Eq. (1) and works directly with the independent variable t ,
whereas the second one introduces a term linearly proportional to the velocity in both sides of the equation, a book-keeping
parameter and a new independent variable. The third Linstedt–Poincaré method introduces a term linearly proportional
to the velocity with a coefficient equal to one in both sides of the equation and an artificial parameter, and expands the
solution in terms of this book-keeping parameter. The fourth and fifth techniques are based on Galerkin approximations
and an iterative procedure, respectively.
The first Galerkin technique presented here is analogous to the first-order harmonic balance procedure employed by

Gottlieb [3,4] while the second one makes use of the integral of Eq. (1). The fifth technique provides approximations to both
the solution and the frequency of oscillation in an iterative (sequentially) manner as compared with the series solutions
obtained with the Linstedt–Poincaré method. Even though, only first- and second-order approximations of the fourth and
fifth techniques are presented in the paper, it must be noted that the objective of presenting them here is two-fold. First, it
is shown that the first-order approximations of these techniques coincide with the first term of the series of the first two
Linstedt–Poincaré methods. Second, the fourth and fifth techniques provide cumbersome nonlinear algebraic equations for
the determination of the frequency of oscillation at higher-order and these equationsmust, in general, be solvednumerically,
whereas the three Linstedt–Poincaré procedures presented here provide explicit expressions for the terms of the series
approximation to the frequency of oscillation.
The paper has been arranged as follows. In Section 2, some analytical solutions to Eq. (1) are obtained by means of

transformations that result in Bernoulli and Riccati equations. In Section 2, some sample results of the analytical periodic
solutions of Eq. (1) are also presented. Three Linstedt–Poincaré, two harmonic balance/Galerkin, and an iterative method
are used to determine the approximate periodic solution of Eq. (1) for α = β = 1 and γ = δ = ε = 0 and the results
are compared with those of harmonic balance, linearized harmonic balance, and parameter perturbation techniques. A final
section on the main findings reported in the paper puts an end to the paper.

2. Analytical solutions

Upon introducing y ≡ ẋ, Eq. (1) can be written as

(yy′)′ = −γ − αy2 − βx2 + δxyy′ − εy2(y′)2, (3)

where y = 0 has been disregarded, and y′ ≡ dy
dx .
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