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1. Introduction

Mathematical models have become important tools in studying the spread and control of infectious diseases. The most
cited work referred to as the pioneering research in mathematical epidemiology is the one developed in 1926 by Kermack
and McKendrick. In their work, they obtained the epidemic threshold result that the density of susceptibles must exceed a
critical value in order for an epidemic outbreak to occur [1,2]. However, other historical antecedents include the smallpox
model formulated and solved by Daniel Bernoulli in 1760 in order to evaluate the effectiveness of variolation of healthy
people with the smallpox virus, and the discrete time model proposed in 1906 by Hamer formulated in his attempt to
understand the recurrence of measles epidemics, which may have been the first model to assume that the incidence (number
of new cases per unit time) depends on the product of the densities of the susceptibles and infectives [2]. In addition, Ross
developed differential equation models for malaria as a host-vector disease in 1911, and he won the second Nobel prize in
medicine. For more details readers can see the first edition (1957) of Bailey’s book, which is an important book that helped
the development of mathematical epidemiology, and the review made by Hethcote in 2000 [2].

The most recent epidemiological models have involved aspects such as passive immunity, stages of infection, vertical
transmission, disease vectors, macroparasitic loads, age structure, social and sexual mixing groups, spatial spread,
vaccination, quarantine, and chemotherapy [2].

Mathematical models and computer simulations are useful experimental tools for building and testing theories, assessing
quantitative conjectures, determining sensitivities to changes in parameter values, and estimating key parameters from data.
Understanding the transmission characteristics of infectious diseases in communities, regions, and countries can lead to
better approaches to decrease the transmission of these diseases [2]. Mathematical models are used in planning, evaluating,
and optimizing various detection, prevention, therapy, and control programs. Epidemiology modeling can contribute to
the design and analysis of epidemiological surveys, suggest crucial data that should be collected, identify trends, make
general forecasts, and estimate the uncertainty in forecasts [2]. Many of these models are based upon systems of ordinary
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differential equations (ODEs). In these models commonly the variables represent subpopulations of susceptibles (S), infected
(I), recovered (R), latent (E), transmitted disease vectors, and so forth. Thus, the ODE system describes the dynamics of the
different classes of subpopulations in the model [3-7]. In this way, acronyms for epidemiology models are often based on the
flow patterns between the compartments such as SI, SIS, SIRS, SEIR, and SEIRS. All these and most of the current models are
extensions of the SIR model elaborated by Kermack and McKendrick in 1927 [2]. Closed-form expressions for these variables
in the mathematical models only are known for the SI epidemic model and closely related variants [1]. On the other hand,
several numerical methods has been applied to solve epidemic models [8-12].

One of the major difficulties of the analytical epidemic approach has been the rapid growth of the mathematical
complexity of the models used to describe the various aspects of phenomena in sufficient detail and the difficulty in solving
them in an analytical form. Hence, their practical use in specific cases is limited. The main difficulties arise from the presence
of the nonlinear term SI which comes from the law of mass of action [13]. However, is our aim in this paper to develop
an exact solution for the classical SIRS epidemic model that may be extended to more complex systems. The SIRS model
and related variants have been used to model several topics such as respiratory syncytial virus, hepatitis, influenza, and
others [2,14-18].

Our procedure to solve the problem is as follows: (i) We rewrite the system of equations for the functions I(t), S(t)
and R(t) corresponding respectively to the infected, susceptible and recovered individuals as a single integro-differential
equation for I(t). (ii) Exploiting the fact that all nonlinear terms in this equation are quadratic in I(t) and I(t) times the
integral of I(t) over time we propose a modal expansion series:
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where the frequencies and the coefficients A, k = 1, 2, ..., are determined by a recurrence relation in terms of 4y and

the parameters of the model. The series in Eq. (1) can be seen as a particular case of general transseries which runs by Borel
summation conditions [19].

This paper is organized as follows. In Section 2 the SIRS epidemiological mathematical model and its underlying
assumptions are presented. We also show how to reduce the system of three differential equations to a single nonlinear
integro-differential equation for I(t). In Section 3, an exact global solution for the classical SIRS epidemic model is obtained.
In order to support our theoretical results, numerical comparisons are shown in Section 4. Finally, in Section 5, a discussion
and conclusions are presented.

2. SIRS epidemic mathematical model

In this section the SIRS epidemic mathematical model is presented. The SIRS model is based on a system of first-order
ordinary differential equations and has been used in the modeling of several infectious diseases where the parameters need
to be estimated by medical data [2]. In this model the variables represent subpopulations of susceptibles (S), infected (I) and
recovered (R). Thus, the model describes the dynamics of the different classes [3,4]. The classical SIRS model (Susceptibles,
Infected, Recovered and Susceptibles) is given analytically by the following form:

S(t) = p— uS(t) — BSOI(E) + yR(), S(0) =S, >0
[(t) = BS(OI(t) — vI(t) — pl(t), 1(0)=Ip >0 2)
R(t) = vI(t) — yR(t) — uR(t), R(0) =Ry > 0.

Some hypotheses assumed in this model are:

(1) The population is divided in three disjoint classes: Susceptibles S(t), who are all individuals that do not have the virus;
Infected I(t), who are all individuals with the virus who are able to transmit the illness; and Recovered R(t), who are all
the healthy individuals with a temporary immunity. . . .

(2) The birthrate u > 0 and death rate are assumed equal. This means that S(t) +1(t) + R(t) = 0. Thus the total population
is constant, and without loss of generality S(t) + I(t) + R(t) = 1.

(3) The coefficient 8 between classes S(t) and I(t) is called the transmission rate.

(4) The per capita rate of leaving the infective class I(t) is called v and the per capita rate of leaving the recovered class R(t)
isy.

(5) Initial conditions are S(t = 0) = Sy, I(t = 0) = I, and R(t = 0) = R,.

In order to present model (2) in a more compact form we define
a=v+pu and =y + u.

Thus model (2) can be rewritten as follows:
S(t) = pu — uS(t) — BS(OI(t) + yR(), S(©0) =Sy >0
i(t) = BS(OIt) — al(t), 1(0)=1Iy >0 (3)
R(t) = vI(t) — SR(t), R(0) =Ry > 0.
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