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1. Introduction

Every year, millions of people around the world suffer from or die of various infectious diseases. Accordingly, many
attempts have been made to develop realistic mathematical models for investigating the transmission dynamics and the
asymptotic behaviors of epidemiological models. How to control or eliminate disease spreading is a subject of continuing
interest to both theoreticians and empiricists.

Some infections such as measles are caused by a virus. A person who suffers a viral infection either dies or develops
antibodies and recovers, and is then usually immune to the disease. Even so, for many diseases an infected individual can
recover and return to the susceptible state and later become reinfected. The common cold is one of the diseases that most
of us get repeatedly. A SIS model is of significance in describing the dynamic properties of some kinds of epidemics and has
been studied extensively (see [1-5]). In many epidemiological models, it is assumed that the infection rate is invariant in
all stages. But in fact, some epidemics are age-associated, with their affects and prevalence increasing with advancing age,
such as Alzheimer’s disease. Since the properties of many epidemics may be variable, their transmission abilities change
gradually in different stages; their infectivity usually depends on the parasite or viral loads in infected individuals or vectors.
For example, measles and varicella always occur in immaturity, while typhus, schistosomiasis cutaneous, diphtheria and
sexually transmitted diseases always break out in maturity. Fatal dengue haemorrhagic fever (DHF) and dengue shock
syndrome (DSS) occur in adults and in primary dengue infection. Some diseases such as hepatitis B and schistosomiasis
usually have a longer period of infection; their infecting force may be different for various stages in progression and most
of the individuals may be infected repeatedly. Consequently, incorporating stage structure into SIS models seems to be
important and more realistic in population dynamics [6,7,1].

The incidence of a disease is the number density of new cases per unit time. Standard epidemiological models use a
double-bilinear incidence rate 8SI based on the law of mass action [1,8]. Since the number of susceptible individuals is
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large, it is unreasonable to consider the bilinear incidence rate within a certain limited time. If the population is saturated
with infective, a nonlinear incidence rate SIPS? (see [9-11]) and a saturated incidence rate % (see[1,12]) are always used
in epidemiological models.

Motivated by the recent work of Aiello, Freedman and Wu [7], in the present article, we consider an age stage structured
SIS model with general incidence rate aU(S)I, where a is the probability in unit time of transmitting infection between
two individuals taking apart in every contact. Note that the incidence rates SIPS? for p = 1 and fsjs mentioned in the
last paragraph can be included in the general form aU(S)I. We believe that the introduction of the incidence rate aU(S)I is
efficient for including more situations with different incidence rates. To the best of our knowledge, this is the first time that
this model has been investigated, and also this is the reason for the novelty of our results.

This article is organized as follows. In Section 2, we give a basic model (2.1) and some preliminary lemmas. We discuss
the basic reproductive number and the dynamic properties of the model in Section 3. In Section 4, we give a numerical
simulation. We end the paper with a brief discussion in Section 5.

2. The model and preliminaries

Let x1(t), xo(t) and y(t) denote the number densities of juvenile, mature and infectious individuals at time t respectively.
We consider the following model:

x1(t) = axza(t) — yx1(t) — e " x(t — 1),
X(t) = e xy(t — T) — BX5(t) — aU(x2()y(t) + ry(t), (2.1)
() = aU(x2(1)y(t) — dy(t) — ry(b),

where «, y, 7, B, a, r and d are positive constants. It is assumed that only the mature individuals are susceptible; the birth
rate at any time t is proportional to the number of adults at that time via a constant coefficient «. The delay t is the time
taken from birth to maturity for an individual. «e™"x, (t — ) represents the rate of recruitment into the adult individuals.
This rate is essentially the birth rate r time units ago, discounted by the factor e™¥* which accounts for mortality during
the juvenile phase. y measures the juvenile death rate while 8 measures the adult death rate. aU(x,(t)) is the function of
infection of susceptible population by a single infectious individual. d is the rate of death from infections and r is the cure
rate.
For ecological reasons, we shall discuss the solutions of (2.1) with the following initial conditions:

X1(0) = ¢1(0), x2(0) = 2(0), y(O) =¢3(0), 6 €[-7,0];

(§017 ©2, (PB) € C([_ta O]a Ri)a Rj_ = {(X'la X2, Y) X = 07X2 > 07}’ > 0}7 (2'2)
0
0O =0, =23 00 = [ ac’pmos

T

The following assumption is needed in what follows: U(S) is continuous and nonnegative on [0, co) and

du(s)

U@ =0, ——=
©) I

~0 forSe (o, %e*ﬂ) L lim U(S) = U(oo). (2.3)

We also note that the last two equations in (2.1) are in fact decoupled from the first equation, and the behavior of
x1(t) is determined by a single linear equation with a non-homogeneous term once x; (t) is known. Consequently, for some
discussion in the next section, our focus will be on the last two equations of (2.1):

{kz(t) =ae Vxy(t — 1) — BX3(t) — aU(xx(0))y(t) + ry(0), (2.4)
y(t) = aU(xx(£))y(t) — dy(t) — ry(b). )

Lemma 2.1. The solutions of (2.1)-(2.2) are positive and eventually bounded.

Proof. Firstly, we obtain, for t > 0, y(t) = @3(0)elolaUE)~d=rlds - o \We shall prove that x,(t) > 0 for t > 0. Suppose
that there exists a ty > 0 such that x,(tg) = 0 and ¥, (ty) < 0. Then from (2.4), it follows that

X (ty) = (xe_”xz(to — 1) +cy(ty) > 0.

This is a contradiction. Thus, x,(t) > 0 fort > 0.
Consider

z(t) = —yz(t) —ae T (t — 1), 2(0) = ¢1(0). (2.5)
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