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a b s t r a c t

We consider the dynamical behavior of a delayed two-coupled oscillator with excitatory-
to-inhibitory connection. Some parameter regions are given for linear stability, absolute
synchronization, and Hopf bifurcations by using the theory of functional differential
equations. Conditions ensuring the stability and direction of the Hopf bifurcation are
determined by applying the normal form theory and the center manifold theorem.We also
investigate the spatio-temporal patterns of bifurcating periodic oscillations by using the
symmetric bifurcation theory of delay differential equations combinedwith representation
theory of Lie groups. Finally, numerical simulations are given to illustrate the results
obtained.
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1. Introduction

There are many papers devoted to the investigation of the dynamical behavior of two coupled neural oscillators (see,
for example, [1,2]). The main functional unit of oscillatory neural networks is a neural oscillator. Some neural oscillator
models consider oscillations as an endogenous property of a pacemaker neuron, such as the Van der Pol model [3], the
Hindmarsh–Rose model [4], and the Hodgkin–Huxley model [5]. Another approach suggests that oscillations arise as a
result of the interactions between neural populations, for example, between excitatory and inhibitory populations, such
as the Wilson–Cowan model [6], integrate and firemodel [7], and McGregor model [8].
The model of a single neural oscillator is represented by a system of two autonomous differential equations describing

the dynamics of average activities of the excitatory and the inhibitory populations (measured as a portion of firing neurons
in each population). Denoting these activities by E and I , respectively, the model reads:{

E ′(t) = −E(t)+ af (−c1I(t − τ)),
I ′(t) = −I(t)+ af (c2E(t − τ)),

(1)

where a, c1, c2 and τ are positive constants, and f is the activation function, which is usually adopted as f (x) = tanh x.
Throughout this paper, we always assume that f : R→ R is C1-smooth function with f (0) = 0. Without loss of generality,
we also assume that f ′(0) = 1. For a number of two neuron models and their linear stability analysis, we refer to the works
of Marcus et al. [9], Babcock and Westervelt [10,11], Gopalsamy and Leung [12]. Consider two identical neural oscillators
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given by (1) and which are coupled using terms that may be interpreted as an additional external input. This system of
coupled oscillators has the form

E ′1(t) = −E1(t)+ af (−c1I1(t − τ)+ P12(t − τ)),
I ′1(t) = −I1(t)+ af (c2E1(t − τ)+ Q12(t − τ)),
E ′2(t) = −E2(t)+ af (−c1I2(t − τ)+ P21(t − τ)),
I ′2(t) = −I2(t)+ af (c2E2(t − τ)+ Q21(t − τ)),

(2)

where P12 = α1E2 − α2I2, P21 = α2E1 − α1I1, Q12 = α3E2 − α4I2, Q21 = α3E1 − α4I1. Here (E1, I1) and (E2, I2) describe the
activities of the first and the second oscillators, respectively. The terms P12, P21, Q12, Q21 describe connections between
the oscillators, and coefficients α1, α2, α3, α4 represent the strength of the connections between sub-populations related
to different oscillators. Since we have symmetric coupling of identical oscillators, Eq. (2) has the reflection symmetry of
interchange of two oscillators.
In this paper, we consider the connections from the excitatory population of one oscillator to the inhibitory population

of the other oscillator, i.e.,
P12 = P21 = 0, Q12 = αE2, Q21 = αE1,

where α is the control parameter. Namely,
E ′1(t) = −E1(t)+ af (−c1I1(t − τ)),
I ′1(t) = −I1(t)+ af (c2E1(t − τ)+ αE2(t − τ)),
E ′2(t) = −E2(t)+ af (−c1I2(t − τ)),
I ′2(t) = −I2(t)+ af (c2E2(t − τ)+ αE1(t − τ)).

(3)

Here we are interested in studying how the coupling strength and the time delay can affect the stability of the zero solution
of system (3) and the bifurcations of periodic solutions when stability is lost.
Note that the coupling is identical and this leads to a nonlinear system with reflection Z2 symmetry. Thus, it is natural

to consider the effect of the coupling strength and the time delay on the existence, spatio-temporal pattern, and stability of
Hopf bifurcating periodic solutions in (3). Golubitsky and Stewart [13] provide abstract techniques, based on group theory,
for predicting the occurrence of particular combinations of spatial and temporal symmetries when a symmetric system of
ordinary differential equations undergoes Hopf bifurcation. For delay differential equations, the general symmetric Hopf
bifurcation theorem has been developed byWu [14], Guo and Lamb [15]. In short, their theorems assert that at a symmetric
analogue of a Hopf bifurcation, one ormore branches of periodic solutions bifurcate. These oscillationsmay be distinguished
by their spatiotemporal symmetry groups Σ , which are subgroups of Z2 × S1. Here, S1 is the circle group and it acts on
a periodic solution by phase shift. The isotropy subgroups measure the amount of symmetry present in the branching
solutions. The question of the existence of symmetry-breaking oscillations is thus reduced to purely group-theoretic
calculations and depends only on the symmetry assumed in the system. The main point here is that typical oscillation
patterns of a system can be predicted in terms of its symmetries, without investigating the detailed dynamical equations.
As such, our model (3) contributes an additional example of bifurcation computation in delay differential equations with Z2
symmetry in the context of artificial neural networks.
The rest of this paper is organized as follows: In Section 2, we discuss the associated characteristic equation, the linear

stability of the trivial solution and the synchronous pattern of solution. Section 3 is devoted to the spatio-temporal pattern,
bifurcation direction and stability of the Hopf bifurcating periodic solutions. Patterns of nontrivial equilibria and numerical
simulations are given in Section 4. Section 5 lists all of the possible codimension two bifurcations.

2. Linear stability analysis

Let C = C([−τ , 0],R4) denote the Banach space of all continuous mappings from [−τ , 0] into R4 equipped with the
supremum norm ‖φ‖ = supθ∈[−τ ,0] |φ(θ)| for φ ∈ C . As usual, if σ ∈ R, A ≥ 0 and u : [σ − τ , σ + A] → R4 is a continuous
mapping, then ut ∈ C for t ∈ [σ , σ + A] is defined by ut(θ) = u(t + θ) for−τ ≤ θ ≤ 0.
Linearizing system (3) at the trivial solution leads to the following linear system:

E ′1(t) = −E1(t)− ac1I1(t − τ),
I ′1(t) = −I1(t)+ ac2E1(t − τ)+ aαE2(t − τ),
E ′2(t) = −E2(t)− ac1I2(t − τ),
I ′2(t) = −I2(t)+ ac2E2(t − τ)+ aαE1(t − τ).

(4)

Then, the characteristic matrix for system (4) is

∆(λ) = (λ+ 1)Id−Me−λτ , (5)
where

M =

 0 −ac1 0 0
ac2 0 aα 0
0 0 0 −ac1
aα 0 ac2 0


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