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1. Introduction

It is well known that errors can seriously limit the performance of the methods and techniques. Effective methods for
dealing with noisy data, especially noisy time series are currently still lacking. There are several noise reduction methods.
It is accepted that singular value decomposition (SVD) based methods and signal subspace (SS) methods are more effective
than many others for noise reduction and forecasting in financial and economic time series [1].

Having a method for decomposing the vector space of the noisy time series into a subspace that is generated by the noise
free series and a subspace for the noise series, we can construct the noise free time series. The approximate decomposition of
the vector space of the noisy time series into noise free time series and noise series subspaces can be done with, for example,
the orthogonal matrix factorization technique such as SVD.

The idea to perform the SS method was proposed in [2] where a modified SVD is used for the reconstruction of noise free
series. A general framework for recovering noise free series has been presented in [3]. The method which forms the basis
for a very general class of subspace based noise reduction algorithms, is based on the assumption that the original time
series exhibits some well-defined properties or obeys a certain model. Noise free series is therefore obtained by mapping
the original time series onto the space of series that possess the same structure as the noise free series.

In this context, the Singular Spectrum Analysis (SSA) technique, which is a SVD and SS based method, can be considered
as a proper method for noise reduction and forecasting time series data sets. The SSA technique incorporates the elements of
classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. The
aim of SSA is to make a decomposition of the original series into the sum of a small number of independent and interpretable
components such as a slowly varying trend, oscillatory components and a structureless noise.

The appearance of SSA is usually associated with the publication of [4]. Possible application areas of SSA are diverse [5]:
from mathematics and physics to economics and financial mathematics, from metrology and oceanology to social science
and market research (see, for example, [5-14] and the references therein). Any seemingly complex series with a potential
structure could provide an example of a successful application of SSA. A thorough description of the theoretical and practical
foundations of the SSA technique (with several examples) can be found in [5,15]. An elementary introduction to the subject
can be found in [16].
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All the aforementioned research is based on the standard SVD and the least squares (LS) estimate. The LS estimate of the
noise free series can be obtained by truncating the singular values. The LS estimator projects the noisy time series onto the
perturbed signal (noise+signal) subspace. The reconstructed series using LS estimator has the lowest possible (zero) signal
distortion and the highest possible residual noise level. In this paper, we consider an alternative method which is based on
the minimum variance (MV) estimator for reconstruction and forecasting noisy time series. The MV estimator is the optimal
linear estimator, which gives the minimum total residual power [17,18].

The structure of the paper is as follows. Section 2 briefly describes least squares and minimum variance estimators. The
reconstruction and forecasting algorithm is presented in Section 3. Our forecast results are then presented and described in
Section 4 and some conclusions are given in Section 5.

2. LS and MV estimators

Consider a noisy signal vector Yy = (y1, ..., yr)’ of length T. We will add the additive white noise to the noise free series
(signal) and assume that the noise is uncorrelated with the signal:

Yr = Sr + Nr; (1)

here St represents the signal component and Ny the noise component. Let K = T — L + 1, where L is some integer called
the window length (we can assume that L < T/2). Define the so-called ‘trajectory matrix’ X = (xy)ﬁ}'; 1» where x;j = yij_1.
Note that X is a Hankel matrix (by the definition, these are the matrices such that their (i, j)th entries depend only on the
sumi+ j);
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We then consider X as a multivariate data with L characteristics and K = T — L + 1 observations. The columns X; of X,
considered as vectors, lie in an L-dimensional space R!. It is obvious that:

X=S+N, 3)

where S and N represent Hankel matrices of the signal St and noise N, respectively. The singular value decomposition (SVD)
of the trajectory matrix X can be written as:

X=UXV, (4)

where U € RYK is the matrix that consists of the normalized eigenvector U; corresponding to the eigenvalue A; (i =
1,...,L),V € R®¥*X is the matrix that contains the principal components defined as V; = X/Ui/\/);-, and ¥ = diag(Aq >
Ay > --- > Ar).The diagonal elements of ¥ are called singular values of X, and their set is called the singular value spectrum.

The SS methods are based on the assumption that the vector space of the noisy time series (signal) can be split into
mutually orthogonal noise and signal4+-noise subspaces. The components in the noise subspace are suppressed or even
removed completely. Therefore, one can reconstruct the noise free series from the signal4+noise subspace by choosing the
weight. Thus, by adapting the weights of the different singular components, an estimate of the Hankel matrix X, which
corresponds to noise reduced series, can be achieved:

X=UW23)V, (5)

where W is the diagonal matrix containing the weights. Now, the problem is choosing the weight matrix W. Next we consider
the problem of choosing this matrix using different criteria. The SVD of the matrix X can be written as:

_ >, 0]V
where U; € R7, ¥; € R™" and V; € R¥*". We can also represent the SVD of the Hankel matrix of the signal sy as:
¥ 0][V;
S=[Uy Uy [ 0 0} [v;i . (7)

It is clear that the Hankel matrix S cannot be reconstructed exactly if it is perturbed by noise.
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