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a b s t r a c t

We consider a non-linear viscous bi-layer shallowwater model with capillarity effects and
extra friction terms in a two-dimensional space. This system is issued from a derivation
of three-dimensional Navier–Stokes equations with a water-depth depending on friction
coefficients. We prove an existence result for a global weak solution in a periodic domain
Ω = T2.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Shallow-Water flows cover a very large number of geophysical and engineering applications, such as ocean circulation,
coastal areas, rivers, lakes, avalanches, . . . . But, in many situations one layer of Shallow-Water cannot be used to model
the system. The simplest example is the flow in the Strait of Gibraltar. It is necessary in this case to consider two layers
of water. Indeed, the conservation of the volume of water and salinity in the basin indicates the presence of two opposite
flows: the surface Atlantic water and the deeper, denser Mediterranean water flowing into the Atlantic. Thus, it is necessary
to consider at least a two layer model if we want to simulate the flow in this region (cf. [8]). We assume that for these
phenomena one can make an appropriate Shallow-Water approximation. For this purpose, we can find many derivations
of bi-layer and multi-layer Shallow-Water models. In [1], Audusse derived a multi-layer Shallow-Water model to extend
the case of one layer established by Gerbeau and Perthame in [15]. In this work, using the hydrostatic pressure and the
kinematic boundary conditions, they derived momentum equations of the form:

∂t

∫ Hα

Hα−1
udz + ∂x

∫ Hα

Hα−1
u2dz + ghα∂xh =

ν0

ε
∂zu(Hα(t, x))−

ν0

ε
∂zu(Hα−1(t, x))

and use at the leading order a finite differencemethodwith respect to the vertical variable when the equation is an interface
equation to deduce the friction term:

µ∂zu(Hα) = µ
Uα+1 − Uα
hα+1 + hα

.
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In [22], Peybernes deduce a bi-layer viscous Shallow-Water model which takes into account the friction at the interface.
But, instead of asymptotic analysis several assumptions of simplifications are used in the boundary conditions to deduce
the final system. Also, the energy of the system is obtained under a restrictive hypothesis on the data.
On the other hand, we propose in this paper a new viscous bi-layer Shallow-Water model with different constant

densities. Following the work performed in [15] for one layer in one dimensional case and in [17] for one layer but in the
two dimensional case, here the considered model is a simplified system of a general one obtained in [14]. In [17], a viscous
one layer of two dimensional Shallow-Water system is derived byMarche. The originality in this work is the introduction of
surface-tension term through the capillary effects at the free surface and quadratic friction term at the bottom. Such surface-
tension and quadratic friction terms have been useful to establish the existence of global weak solutions in [2]. Our model
also takes into account a friction term on the bottom and a capillary term on the interface and on the free surface. Another
work related to the derivation of a 2D Shallow-Water model has been done by Ferrari and Saleri in [13]. In particular, the
authors include the atmospheric pressure in the derivation. For the sake of brevity, we have not included in this work the
deduction of our new viscous bi-layer model, see [14] for detail.
We prove the existence of a global weak solution for the considered system. The analysis developed here is based on

the techniques used by Bresch, Desjardins and Lin in [2,3] and [6]. In these works, they obtain the existence of a global
weak solution for a 2D ShallowWater system and a Korteweg systemwith a diffusion term of type ν div(hD(u)). They prove
that the considered systems is energetically consistent without any restriction on the data. The key point of this proof is
based in a estimate of a new entropy (in mathematical sense), called ‘‘mathematical BD entropy’’, which gives a bound
of the term ∇

√
h. This inequality is extended later to a more general Navier–Stokes equation with an algebraic relation

between the shear and the bulk viscosity coefficients. But, the authors used quadratic friction terms and capillary effects to
get the stability of the system in [2]. More recently, another proof also based on the ‘‘BD entropy’’ estimate of the stability
for the Navier–Stokes equations for barotropic compressible fluids is developed in [18] by Mellet and Vasseur. Note that
this analysis includes the case of Shallow-Water without any regularizing term. Their analysis is based on the estimate of
ρu2 which is enough to get a compactness result. In fact, this estimate replaces that of h1/3u in [2] obtained by using a drag
term of the form r|h||u|u. But, it is not actually possible to construct a suitable approximate sequences of weak solutions
with this method.
In [12,22], the authors prove the existence of a global weak solution of a bi-layer Shallow-Water model without any

friction term but with a diffusion term of the form ν∆u. This analysis uses the method developed by Orenga in [21] and
the system is energetically consistent only for small enough initial data. Others works concerning the existence of a global
weak solution of a bi-layer Shallow-Water using the preceding method can also be found in [9,19,20].
In this work, we consider in a periodic domainΩ , a system composed by two layers of immiscible fluids with different

and constant densities (ρ1 and ρ2, resp.) and viscosities (ν1 and ν2, resp.).
From now on, index 1 refers to the deeper layer and index 2 to the upper layer of the flow. So, hi, ui for i = 1, 2 denote

the thickness and the velocity field of each layer. We define h to be h = h1 + h2. We assume that the friction coefficient at
the bottom c0 and the coefficients α1, α2 representing respectively the interface and free surface tensions coefficients are
positive.
The model proposed here reads as:

∂th1 + div(h1v1) = 0; (1)
ρ1∂t(h1v1)+ ρ1 div(h1v1 ⊗ v1)− 2ν1 div(h1D(v1))+ ρ1gh1∇h1 + ρ2gh1∇h2

−

(
1+

c0β(h1)h1
6ν1

)
fric(v1, v2)+ c0β(h1)v1 − α1h1∇(∆h1)− α2h1∇(∆h2) = 0; (2)

∂th2 + div(h2v2) = 0; (3)
ρ2∂t(h2v2)+ ρ2 div(h2v2 ⊗ v2)− 2ν2 div(h2D(v2))
+ ρ2gh2∇h2 + ρ2gh2∇h1 + fric(v1, v2)− α2h2∇(∆h) = 0 (4)

with initial conditions:

hi|t=0 = hi0 ≥ 0, hivi|t=0 = mi0 , (5)

for which we assume the following regularity:

hi0 ∈ L
2(Ω), ∇hi0 ∈ (L

2(Ω))2, ∇
√
hi0 ∈ (L

2(Ω))2

|mi0 |
2

hi0
∈ L1(Ω), log−(hi0) ∈ L

1(Ω).
(6)

The function β depending on h1 is one of the drag coefficients given by:

β(h1) =
(
1+

c0
3ν1
h1

)−1
. (7)

We denote by D(v) the strain tensor, defined by D(v) = ∇v+∇
tv

2 , and by A(v), the vorticity tensor such that A(v) = ∇v−∇
tv

2 .
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