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Genome-wide association studies the evaluation of association between candidate gene and disease status is
widely carried out using Cochran-Armitage trend test. However, only a small number of research papers have
evaluated the distribution of p-values for the Cochran-Armitage trend test. In this paper, an enhanced version
of Cochran-Armitage trend test based on bootstrap approach is introduced. The achieved results confirm that
the distribution of p-values of the proposed approach fits better to the uniform distribution, and it is thus con-
cluded that the proposed method, which needs less assumptions in comparison with the conventional method,
can be successfully used to test the genetic association.
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1. Introduction

A central goal of genomewide association studies (GWAS) is to iden-
tify genetic risk factors for complex disorders. In order to find the
disease genetic risk factors in a population, GWAS measures DNA
sequence variations across human genome (Bush and Moore, 2012).
Practitioners inmedical sciences and bioinformatics useGWAS to inves-
tigate the relations in different disorders; GWAS of different cancers
(Easton and Eeles, 2008), GWAS of pancreatic cancer (Amundadottir
et al., 2009). The idea of genetic variations with alleles that are common
in the population may explain much of the heritability of common dis-
eases, see (Reich and Lander, 2001) and (Schork et al., 2009). Review of
GWAS can be found in several texts and papers, see (Moore et al., 2010)
among others.

In the simplest form of association mapping, a set of markers are
genotyped in both sample of cases and sample of unrelated controls
and then using different association tests, allele frequency differences
or genotype frequency differences at each marker will be studied
(Pritchard and Donnelly, 2001). The main idea behind GWAS studies
relies on the fact that if a mutation has positive correlationwith suscep-
tibility of a disease, then that mutation is expected to be more frequent
among affected individuals than those unaffected individuals (Pritchard
and Donnelly, 2001). Hence, considering the existence of linkage

disequilibrium (LD) between the marker locus and the susceptibility
mutation, the marker close to the disease mutation may also present
a frequency difference between case and control group of study
(Pritchard and Donnelly, 2001).

Case-control traits can be analysed using either logistic regression or
contingency table techniques (Bush and Moore, 2012). Contingency
tablemethods examine the deviation from independence that is expect-
ed under the null hypothesis of observing no association between the
disease under study and the measured allelic/genotyping frequency
differences (Bush and Moore, 2012). Pearson chi-squared test and the
related Fisher's exact test are the most widely used tests for indepen-
dence of the rows and columns of the contingency table (Bush and
Moore, 2012).

It should be noted that the association tests are performed separate-
ly for each individual marker and depending on the aim of study, the
data for each marker with minor allele a and major allele A can be rep-
resented either as genotype count (e.g., a/a, A/a and A/A) or allele count
(e.g., a and A) (Clarke et al., 2011). It is widely believed that the allelic
association test with 1 degrees of freedom (df) is more reliable than
the genotypic test with 2 df. However, it is imperative to note that this
superior performance can only be considered for the case of having
the penetrance of the heterozygote genotype between the penetrance
of the two homozygote genotypes (Clarke et al., 2011).When the distri-
bution of genotypes in the population deviates from Hardy-Weinberg
proportions (HWE), of which additive, dominant and recessive models
are all examples (Clarke et al., 2011), the frequency of genotypes rather
than alleles should be compared by the Cochran-Armitage test for trend
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(Sasieni, 1997). For more information on different models see (Clarke
et al., 2011).

Thus, the advantage of the Cochran-Armitage trend test in compari-
son to Pearson's Chi-Square test is that it possesses the superior
conservation and is not dependent on the HWE assumption (Sasieni,
1997). Therefore a number of authors have recommended to use the
Cochran-Armitage trend test as the genotype-based test for association
(Sasieni, 1997; Corcoran et al., 2000; Li, 2008; Risch and Merikangas,
1996; Risch, 2000). It should also be noted that the allelic and trend sta-
tistic are equivalent when the combined sample is in HWE (Sasieni,
1997).

However, a major drawback of model basedmethods is that the sta-
tistical properties depend on the choice of weights. Thus, the model
miss-specifications minimize the power of the test (Sasieni, 1997;
Corcoran et al., 2000; Li, 2008; Risch and Merikangas, 1996; Risch,
2000). Furthermore, Escott-Price et al. (2013) showed that, although
in most scenarios the Cochran-Armitage trend test is more powerful
than the chi-squared test of genotype counts, the advantage is not
substantial. Even, when the disease locus is extremely biased from the
additive model, the chi-squared test of genotype counts can be more
powerful than the Cochran-Armitage trend test due to the choice of
scores for each genotype in the trend test (Escott-Price et al., 2013).

Although, there are considerable studies about the advantages and
disadvantages of Cochran-Armitage trend test, to the best of our knowl-
edge, there is a small number of researches which evaluated the distri-
bution of p-values for this association test. In this paper the distribution
of the p-values derived by the Cochran-Armitage trend test has been
studied and it has been shown that unlike the considered presumption
those p-values obtained by this test are not uniformly distributed. To
overcome this issue, we introduce a new method, based on the boot-
strap technique, for computing the p-value of the Cochran-Armitage
trend test.

The bootstrapmethod has become a standard tool in statistical anal-
ysis and is an indispensable tool for testing statistical hypotheses. Using
resampling, bootstrap approximates the sampling distribution of a sta-
tistic under the null (or the alternative) hypothesis. Bootstrap provides
a practical complement to asymptotic parametric inference, hence have
attracted many attentions in the applied. The efficiency of the nonpara-
metric bootstrap method has also been shown by Amiri and von Rosen
(2011) in which for example in the case of the Pearson chi-squared
statistic with a Yates' correction and Fisher's exact test, remarkable im-
provement has been achieved. The Pearson chi-squared statistic with a
Yates' correction and Fisher's exact test, are quite conservative and fail
to reject the null hypothesis and can not be recommended to test
independence with small sample sizes.

The remainder of this paper is organized as follows. The concept of
Cochran-Armitage trend test is explained in Section 2. Section 3 studies
the alternative approach to draw the inference including the bootstrap
version of Cochran-Armitage trend test. Section 4 investigates the pro-
posed method using the Monte Carlo simulation, which show they are
the accurate tests in terms of the significant level and statistical
power. Section 4 also demonstrates the improvements in goodness-of-
fitness achieved by the introduced bootstrap approach. The paper
concludes with a concise summary in Section 5.

2. Cochran-Armitage trend test

The Cochran-Armitage's trend test is a widely used test for trend
among binomial proportions which uses the genotype contingency
table (Table 1) in a different manner than Pearson's test. Power is very
often improved as long as the probability of having disease increases
with the number of disease-associated alleles. In genetic association
studies in which the underlying genetic model is unknown, the additive
version of this test is most commonly used. In order to measure the
effect of genotype i and to detect particular types of association, we

introduce a weight wi. The special choice (w0,w1,w2)=(0,1,2), repre-
sents the additive effect of allele A. (See Table 2.)

Let us consider a single-marker locuswith twopossible alleleswhich
are commonly denoted by A and a. Thus, each individual has three
possible genotypes AA ,Aa, and aa. In the following we denote the two
alleles by 0 and 1 instead of A and a and the genotypes by 0 ,1 ,2, the
sum of the two allele indices involved. We assume a random sample
of n cases and m unrelated controls. The case-control data can then be
summarized according to genotypes as shown in Table 1.

Here, (n0 ,n1 ,n2) are counts of the genotypes in cases and
(m0 ,m1 ,m2) are counts of the genotypes in controls, and (N0 ,N1 ,N2)
are counts of the genotypes in case-control samples. Let n and m be
the total number of cases and controls, respectively, and the total sam-
ple size, N=n+m. As cases and controls are independently sampled
the genotype counts for cases and controls follow independentmultino-
mial distributions with parameters (p0 ,p1 ,p2), and (p0′ ,p1′ ,p2′), respec-
tively, where pi and pi′, i=0,1,2, are the genotype probabilities in cases
and controls.

n0;n1;n2ð Þ : Multi n;p0;p1;p2ð Þ;

m0;m1;m2ð Þ : Multi m;p00; p
0
1; p

0
2

� �
:

Under the null hypothesis of no association, H0:pi=pi′ for i=0,1,2.
The Cochran-Armitage's trend test statistic for the data in Table 1 is
given by

T ¼ N N n1 þ 2n2ð Þ−n N1 þ 2N2ð Þð Þ2

n N−nð Þ N N1 þ 4N2ð Þ− N1 þ 2N2ð Þ2
� � : ð1Þ

The statistic in Eq. (1) follows the chi-square distribution with one
degree of freedom (df), see (Armitage, 1955). Let us denote the
Cochran-Armitage trend test as CA in the rest of work.

Agresti (2007) states CA in terms of the Pearson chi-squared statis-
tic. Consider a contingency table 2× J with ordered column, see
Table 1. Let nj~bin(Nj,pj), j=0,… , J−1, it is of interest to test the
following null hypothesis

H0 : p0 ¼ p1 ¼ … ¼ pJ−1;
H1 : pi≠pj; ∃i≠ j:

ð2Þ

It can be carried out by using a linear probability model

pj ¼ α þ βwj: ð3Þ

Table 1
Genotype counts distribution for the case-control studies.

w0=0 w1=1 w2=2 Total

Case n0 n1 n2 n
Control m0 m1 m2 m
Total N0 N1 N2 N

Table 2
Frequency table.

score

w0 w1 … wJ−1 total
n0 n1 … nJ−1 n
m0 m1 … mJ−1 m
N0 N1 … NJ−1 N
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