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ABSTRACT

The Curveball algorithm is an efficient and unbiased procedure for randomizing bipartite networks (or their

matrix counterpart) while preserving node degrees. Here we introduce two extensions of the procedure, making

it capable to randomize also unimode directed and undirected networks. We provide formal mathematical proofs

that the two extensions, as the original Curveball, are fast and unbiased (i.e. they sample uniformly from the

universe of possible network configurations).
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Methods details
Background

A good algorithm to generate random networks with prescribed degree distribution (which is
identical to the issue of generating random binary matrices with fixed marginal totals) should have
two properties: it should be able to generate any one among all possible networks having a certain
node degrees with the same probability, i.e. it should not tend towards the generation of networks
having particular structural properties; and it should be able to generate truly random networks fast.
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Markov chains, where the randomization takes place in subsequent steps, each involving a small
change in the network structure, represent a common solution to this problem. Several network
randomization Markov chains have been shown to converge to the uniform distribution on their
state space, that is they have been shown able to generate truly random networks with prescribed
degree distribution [1-5]. By contrast, most of Markov chains exhibit an important limit, that is it is
not clear how many randomization steps they require to ensure that the randomized network is
truly random.

The best known Markov chain approach for randomizing network while preserving their degree
sequence is the switching model (also known as rewiring, switching chain and swapping edges)
[6,7,2,8]. It can be applied to different kinds of networks, being able to properly randomize bipartite
networks, undirected networks or directed networks with given node degrees, by repeatedly
switching the ends of non-adjacent edge pairs (with some additional rules required for the correct
randomization of directed networks, [2]). Yet, this method has a fundamental drawback, which is
requiring a very large number of switches in order to ensure an unbiased randomization, which grows
very rapidly with the size of the network (see, for example, [9]).

A more recent Markov chain approach is the Curveball algorithm [10]. Experimentally, this chain
has been shown to mix much faster than the corresponding switching chain [10]. Why the Curveball
algorithm mixes faster than the switching model can be understood when thinking of both algorithms
as games in which kids trade cards. That is, think of the Curveball algorithm as an algorithm that
randomises the binary n x m bi-adjacency matrix of a bipartite network. Imagine that each row of the
adjacency matrix corresponds to a kid, and the 1's in each row correspond to the cards owned by the
kid. Then at each step in the Curveball algorithm, two kids are randomly selected, and trade a number
of their differing cards. Using this same analogy for the switching model, in each step two cards are
randomly selected and traded if firstly they are different and secondly they are owned by different kids
(note that various algorithms implementing similar approaches were discovered independently by
Verhelst [4]). Intuitively, the Curveball algorithm is clearly a more efficient approach to randomise the
card ownership by the kids. More formally, the Curveball algorithm is also based on switches but
instead of making one switch, several switches can be made in a single step, which leads to possibly
exponentially many networks being reached in a single step, in contrast with the switching model
where at most n* (the maximum number of possible edge pairs) networks can be reached in a single
step.

Designed to randomize only bipartite networks, the Curveball permits the randomization of both
species x locality matrices, and bipartite ecological networks such as host-parasite and plant-
pollinator ones. There is, however, an important reason why such design requires an urgent upgrade.
Notably, bipartite ecological networks have often been studied separately from food webs, even
though all those networks belong to the same broader ecological class of ‘resource-consumer’
networks [11].

Food webs belong to a different class of networks, that is directed networks. In such networks,
nodes cannot be attributed unambiguously to two different classes, since the same node can be
simultaneously a consumer and a resource (for example, a predator can be eaten by another predator
of a higher trophic level) [12]. A third class of networks is that of undirected networks, which has
importance in various fields, such as social sciences and epidemiology, with networks of those kinds
being well suited, to represent contacts between persons, and that is also becoming increasingly
relevant in the ecological context. In fact, there is a growing interest in the study of co-occurrence
networks, that is networks obtained by linking species found together more often than random
expectation, and hence considered as potentially interacting (see, for example, [13-15]).

Although some attempts has been recently made to provide measures of network structure
applicable to different kinds of ecological networks (see, for example, [16,17]), we are still very far from
having a unifying analytical toolbox. Here we take a step further in this direction, by showing how the
efficient Curveball algorithm can be extended to work also with unimode directed networks, and
undirected networks. Besides providing ecologists with a common procedure to analyze different
ecological entities, this constitutes an important advance for network science in general, with the
potential of bringing benefit to various disciplines.
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