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Abstract

In this paper, we present a general class of neural networks with discontinuous neuron activations and varying coefficients, where
the neuron activation function is a discontinuous monotone increasing and bounded function. By using the fixed point theorem in
differential inclusion theory and constructing suitable Lyapunov functions, a condition is derived which ensures the existence and
global exponential stability of a unique periodic solution for the neural network. Furthermore, under certain conditions global
convergence in finite time of the state is investigated. The obtained results show that Forti’s conjecture for neural networks without
delays is true. Finally, two numerical examples are given to demonstrate the effectiveness of the results obtained in this paper.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In the application of neural networks either as associative memories or as optimization solvers, the stability of
networks is a prerequisite. Particularly, when neural networks are employed as associative memories, the equilibrium
points represent the stored patterns, and, the stability of each equilibrium point means that each stored pattern can
be retrieved even in the presence of noise. When employed as an optimization solver, the equilibrium points of
neural networks correspond to possible optimal solutions, and the stability of networks then ensures the convergence
to optimal solutions. Also, stability of neural networks is fundamental for network designs. Due to these, stability
analysis of neural networks has received extensive attention from a lot of scholars so far [1–13]. It is well known
that studies on neural networks not only involve discussions of stability property of the equilibrium point, but also
involve investigations of other dynamics behaviors such as periodic oscillation, bifurcation and chaos. In many
applications, knowing the property of periodic oscillatory solutions is very interesting and valuable. For example,
the human brain is often in periodic oscillatory or chaos state, hence it is of prime importance to study periodic
oscillatory and chaos phenomenon of neural networks for understanding the function of the human brain. In the
existing literature, almost all results on the stability of periodic solutions of neural networks with or without time
delays are conducted under some special assumptions on neuron activation functions. These assumptions frequently
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include those such as Lipschitz conditions, bounded and/or monotonic increasing property (see, for instance, [1–8] and
the references therein). Recently, in Refs. [9–13], the authors discussed global stability for the neural networks with
discontinuous neuron activations and constant coefficients. Particularly, in [13], Forti conjectures that all solutions
of neural networks with discontinuous neuron activations converge to an asymptotically stable limit cycle (periodic
solution) whenever the neuron inputs are periodic functions. As far as we know, there are few papers which deal with
this conjecture. The purpose of this paper is, by using the fixed point theorem of differential inclusion theory and
some new analysis techniques, and by constructing suitable Lyapunov functions, to study the existence, uniqueness
and global exponential stability of periodic solution of neural networks with discontinuous neuron activations and
varying coefficients. The conclusions obtained in this paper can be thought of as a generalization of the previous
results established for neural networks possessing smooth neuron activations and periodic inputs [2–7], and neural
networks with discontinuous neuron activations but without delays [11]. We have proved the Forti’s conjecture in [13]
for neural networks without delays is true.

For later discussion, we introduce the following notations.
Let x = (x1, . . . , xn)

′ , y = (y1, . . . , yn)
′ , x, y ∈ Rn , where the prime means the transpose. By x > 0

(respectively, x ≥ 0) we mean that xi > 0 (respectively, xi ≥ 0) for all i = 1, . . . , n. ‖x‖ = (
∑n

i=1 x2
i )

1
2 denotes the

Euclidean norm of x . 〈x, y〉 =
∑n

i=1 xi yi 〈·, ·〉 denotes the inner product. By the Cauchy inequality, it easily follows

|〈x, y〉| ≤ ‖x‖‖y‖.

Given a set Q ⊂ Rn , by K [Q] we denote the closure of the convex hull of Q. If x̂ ∈ Rn and r > 0, B(x̂, r) = {x ∈
Rn
: ‖x− x̂‖ < r} denotes the ball with radius r and center x̂ . µ(Q) denotes the Lebesgue measure in Rn of Q. Let X

be a Banach spaces, ‖x‖X denotes the norm of x , ∀x ∈ X . By L1([0, ω], Rn), ω ≤ +∞, we denote the Banach spaces
of the Lebesgue integrable functions x(·): [0, ω] → Rn equipped with the norm

∫ ω
0 ‖x(t)‖dt . Let V : Rn

→ R be a
locally Lipschitz continuous function, The Clarke’s generalized gradient [16] of V at x is defined by

∂V (x) = K [lim∇V (xi ) : xi → x, xi ∈ Rn
\ ΩV ∪N ],

where ΩV ⊂ Rn is the set of Lebesgue measure zero where ∇V does not exist, and N ⊂ Rn is an arbitrary set with
measure zero. For example, if V : R→ R is given by V (x) = |x |, then we have

∂V (x) = K [sign(x)] =

1, x > 0,
[−1, 1], x = 0,
−1, x < 0.

The rest of this paper is organized as follows. In Section 2, a new neural network model considered in this paper is
developed, and some preliminaries also are given. In Section 3, the proof on the existence of periodic solution for
the neural network is presented. Section 4 discusses global exponential stability and convergence in finite time for
the neural networks. A sufficient condition ensuring the global exponential stability for the neural network is given.
Illustrative examples are provided to show the effectiveness of our results in Section 5. Some conclusions and hints
are drawn in Section 6.

2. Preliminaries

The model we consider in the present paper is the neural networks modelled by the differential equation

ẋ(t) = −D(t)x(t)+ B(t)g(x(t))+ I (t), (1)

where x(t) = (x1(t), . . . , xn(t))′ is the vector of neuron states at time t ; D(t) = diag(d1(t), . . . , dn(t)) is
n × n continuous ω-periodic diagonal matrices, di (t) > 0, i = 1, . . . , n are the neural self-inhibitions at time
t ; B(t) = (bi j (t))n×n are an n × n continuous ω-periodic interconnection matrix; g(x) = (g1(x1), . . . , gn(xn))

′:
Rn
−→ Rn , gi , i = 1, . . . , n represents the neuron input–output activation and I (t) = (I1(t), . . . , In(t))′ is the

continuous ω-periodic vector function denoting neuron inputs.
For the neuron activations gi , i = 1, . . . , n, we assume that
H1: (1) gi , i = 1, . . . , n is piecewise continuous, i.e., gi is continuous in R except at a countable set of jump

discontinuous points, and in every compact set of R, has only a finite number of jump discontinuous points.
(2) gi , i = 1, . . . , n is nondecreasing and bounded.
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