

Contents lists available at ScienceDirect

MethodsX

journal homepage: www.elsevier.com/locate/mex

Method Article

Validation of an optimised protocol for quantification of microplastics in heterogenous samples: A case study using green turtle chyme

Alexandra G.M. Caron^{a,b,c}, Colette R. Thomas^{b,d}, Kathryn L.E. Berry^{a,c}, Cherie A. Motti^{a,*}, Ellen Ariel^e, Jon E. Brodie^f

^a Australian Institute of Marine Science PM3, Townsville MC, QLD 4810, Australia

^b Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville 4811, Australia

^c AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Australia ^d SEED Science, Australia

^e College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4811, Australia

^fARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, Australia

ABSTRACT

Quantifying the extent of microplastic (<5 mm) contamination in the marine environment is an emerging field of study. Reliable extraction of microplastics from the gastro-intestinal content of marine organisms is crucial to evaluate microplastic contamination in marine fauna. Extraction protocols and variations thereof have been reported, however, these have mostly focussed on relatively homogenous samples (i.e. water, sediment, etc.). Here, we present a microplastic extraction protocol for examining green turtle (*Chelonia mydas*) chyme (i.e. ingested material and digestive tract fluid), which is a heterogeneous composite of various organic dietary items (e.g. seagrass, jellyfish) and incidentally-ingested inorganic materials (sediment). Established extraction methods were modified and combined. This protocol consists of acid digestion of organic matter, emulsification of residual fat, density separation from sediment, and chemical identification by Fourier transform-infrared spectroscopy. This protocol enables the extraction of the most common microplastic contaminants>100 µm: polyethylene, high-density polyethylene, (aminoethyl) polystyrene, polypropylene, and polyvinyl chloride, with 100% efficiency. This validated protocol will enable researchers worldwide to quantify microplastic contamination in turtles in a reliable and comparable way.

https://doi.org/10.1016/j.mex.2018.07.009

Abbreviations: SLS, sodium lauryl sulphate; PE, polyethylene; HDPE, high density polyethylene; PVC, polyvinyl chloride; PP, polypropylene; PET, poly(ethylene terephthalate); AM-PS, (aminoethyl) polystyrene; RO, reverse osmosis; ATR-FTIR, attenuated total reflectance Fourier transform-infrared spectroscopy.

^{*} Corresponding author at: Australian Institute of Marine Science PM3, Townsville MC, QLD 4810, Australia.

E-mail addresses: caronalexandra@yahoo.fr (A.G.M. Caron), colette.thomas@gmail.com (C.R. Thomas), kathrynaberry@gmail.com (K.L.E. Berry), c.motti@aims.gov.au (C.A. Motti), ellen.ariel@jcu.edu.au (E. Ariel), jon.brodie@jcu.edu.au (J.E. Brodie).

^{2215-0161/© 2018} The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

- Optimization of microplastic extraction from multifarious tissues by applying established methods in a sequential manner.
- Effective for heterogenous samples comprising organic and inorganic material.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

A R T I C L E I N F O Method name: Sequential protocol for extracting microplastics from heterogenous sample matrices Keywords: Plastic ingestion, Marine debris, Plastic contamination, Extraction technique, Chemical digestion, Density separation, Fourier transform-infrared spectroscopy Article history: Received 28 March 2018; Accepted 11 July 2018; Available online xxx

Article history. Received 26 March 2018, Accepted 11 July 2018, Available offilie x

Specifications Table

Subject area	Environmental Science
More specific subject area	Marine pollution
Method name	Sequential protocol for extracting microplastics from heterogenous sample matrices
Name and reference of	Nitric acid digestion: Claessens, M., Van Cauwenberghe, L., Vandegehuchte, M.B., Janssen, C.
original method	R., 2013. New techniques for the detection of microplastics in sediments and field collected
	organisms. Mar. Pollut. Bull. 70, 227–233. doi:https://doi.org/10.1016/j.
	marpolbul.2013.03.009
	Density separation: Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., Thiel, M., 2012. Microplastics
	in the marine environment: A review of the methods used for identification and
	quantification. Environ. Sci. Technol. 46, 3060–3075. doi:https://doi.org/10.1021/es2031505
	FTIR spectroscopy: Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., Thiel, M., 2012. Microplastics
	in the marine environment: A review of the methods used for identification and
	quantification. Environ. Sci. Technol. 46, 3060–3075. doi:https://doi.org/10.1021/es2031505
	Kroon, F., Motti, C., Talbot, S., Sobral, P., Puotinen, M., 2018. A workflow for improving
	estimates of microplastic contamination in marine waters: A case study from North-
	Western Australia. Environmental Pollution, 238, 26–38.
	Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G., McGonigle, D.,
	Russell, A.E., 2004. Lost at sea: Where is all the plastic? Science 304, 838. doi:https://doi.
	org/10.1126/science.1094559
	Jung, M.R., Horgen, F.D., Orski, S. V, C, V.R., Beers, K.L., Balazs, G.H., Jones, T.T., Work, T.M.,
	Brignac, K.C., Royer, S., Hyrenbach, K.D., Jensen, B.A., Lynch, J.M., 2018. Validation of ATR FT-
	IR to identify polymers of plastic marine debris, including those ingested by marine
	organisms. Mar. Pollut. Bull. 127, 704–716. doi:https://doi.org/10.1016/j.
	marpolbul.2017.12.061
Resource availability	Hardware:
	Extraction:
	Aluminium trays and foil
	Block heater (80 °C, model AIM500, SEAL Analytical)
	Branson [®] 2200 Ultrasonic Clearer Coursed along dichae (shellow flat bettemed 5 cm diameter)
	• Covered glass disnes (shallow, flat bottomed, 5 cm diameter)
	• Freezer (-20°C)
	• Fridge (4°C)
	• Glass Dedkels (200 IIIL)
	• Glass Pasteur pipette
	• I FUER FUERTING FORT
	Glass suffring fou Class test tubes (50 mL)
	 Glass Stirring rod Glass test tubes (50 mL) Glass Vacuum-filter apparatus (glass frit Buchner funnel with metal clamp and vacuum)
	 Glass stirring rou Glass test tubes (50 mL) Glass Vacuum-filter apparatus (glass frit Buchner funnel with metal clamp and vacuum Frienmever flask: Millinore)
	 Glass stirring rou Glass test tubes (50 mL) Glass Vacuum-filter apparatus (glass frit Buchner funnel with metal clamp and vacuum Erlenmeyer flask; Millipore) Hot plate (50 °C Stuart CB160)
	 Glass stirring rou Glass test tubes (50 mL) Glass Vacuum-filter apparatus (glass frit Buchner funnel with metal clamp and vacuum Erlenmeyer flask; Millipore) Hot plate (50 °C, Stuart CB160) Lint free tissue
	 Glass stirring rod Glass test tubes (50 mL) Glass Vacuum-filter apparatus (glass frit Buchner funnel with metal clamp and vacuum Erlenmeyer flask; Millipore) Hot plate (50 °C, Stuart CB160) Lint free tissue Maggylamp (×2 magnification)
	 Glass stiring rod Glass test tubes (50 mL) Glass Vacuum-filter apparatus (glass frit Buchner funnel with metal clamp and vacuum Erlenmeyer flask; Millipore) Hot plate (50 °C, Stuart CB160) Lint free tissue Maggylamp (×2 magnification) Metal bucket
	 Glass stiring rod Glass test tubes (50 mL) Glass Vacuum-filter apparatus (glass frit Buchner funnel with metal clamp and vacuum Erlenmeyer flask; Millipore) Hot plate (50 °C, Stuart CB160) Lint free tissue Maggylamp (×2 magnification) Metal bucket Metal needles
	 Glass stiring rod Glass test tubes (50 mL) Glass Vacuum-filter apparatus (glass frit Buchner funnel with metal clamp and vacuum Erlenmeyer flask; Millipore) Hot plate (50 °C, Stuart CB160) Lint free tissue Maggylamp (×2 magnification) Metal bucket Metal needles Metal tweezers
	 Glass stiring rod Glass test tubes (50 mL) Glass Vacuum-filter apparatus (glass frit Buchner funnel with metal clamp and vacuum Erlenmeyer flask; Millipore) Hot plate (50 °C, Stuart CB160) Lint free tissue Maggylamp (×2 magnification) Metal bucket Metal needles Metal tweezers Metal teaspoon
	 Glass stirring rod Glass test tubes (50 mL) Glass Vacuum-filter apparatus (glass frit Buchner funnel with metal clamp and vacuum Erlenmeyer flask; Millipore) Hot plate (50 °C, Stuart CB160) Lint free tissue Maggylamp (×2 magnification) Metal bucket Metal needles Metal tweezers Metal teaspoon Millipore HA cellulose nitrate/acetate 0.45 µm pore membrane filters

Download English Version:

https://daneshyari.com/en/article/8390064

Download Persian Version:

https://daneshyari.com/article/8390064

Daneshyari.com