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Abstract

In this paper, we study a class of recurrent neural networks (RNNSs) arising from optimization problems. By constructing appropriate
Lyapunov functions, we prove two new results on input-to-state convergence of RNNs with variable inputs. Numerical simulations
are also given to demonstrate the convergence of the solutions.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider the following recurrent neural network (RNN) model of nonlinear differential equations

dei () .
S =g O) H I, i=1.2,n, 120, ey
j=1
where a;j,i, j =1,2,...,n, are constant connection weights and A = (a;;), «, is the connection matrix, the inputs
Ii(t),i =1,2,...,n, are continuous functions defined on [0, 400), and g;(s), i = 1,2, ..., n, are the activation

functions of the network. In many applications, the activation functions g; (s) often take the form of sigmoid functions.

The neural network model of the form (1) is different from the well-known Hopfield model as well as the bidirectional
associative memory (BAM) and cellular neural network models ([8]). It does not have a linear term, and the inputs
I; (t) are functions of . This class of RNN models have found many applications in solving optimization problems (see
[4-7]) and has been extensively studied in the monograph [8].

For the neural network model (1), an important concept, called input-to-state convergence (ISC), has been proposed
and studied in [8]. The ISC concept is similar to the widely recognized notion of input-to-state stability (ISS), which
has been a useful concept in studying nonlinear control problems (see [2,3]). In this paper, we continue the study of
ISC for the recurrent neural network model (1) and prove two new results. The first result gives new criteria that are
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not seen in the literature. The second result, which is proved using a different and simpler approach, generalizes and
improves Theorem 7.2 from [8]. Examples are also given to illustrate our results.

2. Preliminaries

Let A = (aij)nxn> 1(0) = (11(0), L2 (0), .., ()T, x(1) = (x1(1), x2(0), .., X2 (1), and G (x (1)) = (g1(x1()),

22(x2(0), ..., gn (X, ())T. We rewrite (1) in a compact vector form
d);f) = AG(x(1) + (1), t>0. 2)

Throughout the paper, for a given continuous vector function /(¢) and a constant vector /, ({(¢), I) will be called an
input pair. Each activation function g; will be assumed to be a sigmoid function satisfying

(1) limyo00gi () = %1, [gi ()| <1, 5 € R;
2) 0<gi(s) <£i(0), s € R\{0};
(3) limy— +o0gi(s) =0.

Obviously, for each such function g;, its inverse g; ! exists and is continuous. Typical examples of sigmoid functions
are
eS—e™* 1—e™* 2 _yym 1
tanh(s) = — -, -, —tan (—s) , -
eS+e ™t I +e* T 2 l+e*
For any x(0) € R", x(¢, x(0)) will denote the solution of (1) starting from x(0).
The notion of ISC was first introduced and discussed in [8]. Our definition below is adapted from [8] and appears to
be more appropriate in relating the ISC of the network to its variable input.

Definition 2.1. The network (1), or equivalently (2), is said to be input-to-state convergent (ISC) with respect to an
input pair (I (¢), I), if

QUE(x* € RMAG(*) +1 =0} #£0 (3)

implies that for any x(0) € R", lim;_, 5ox (¢, x(0)) = x™* for some x* € Q([).

Foreachi =1,2,...,n, define

gi - 7ooi13f<+oo 8i (S),

e g

—00<s<+00
It is easily seen (see [8]) that if the inverse A7l =@ i )nxn €Xists, then the set (1) # ¢ if and only if
n

=Y ailje(g,8), i=12....n Q)

j=1

It is also obvious from the assumed monotonicity of the activation functions that if A~! exists and Q(I) # @, then
Q(I) must be a singleton (i.e., a one-point set).

Recall that amatrix M = (m;;),, «, is called an M-matrixif m;; >0 (i=1,2,...,n),m;; <0G # j, i, j=1,2,...,n)
and the real part of every eigenvalue of M is non-negative. M is called a non-singular M-matrix if M is both an M -matrix
and non-singular.

It can be shown (see [1]) that a matrix M is a non-singular M-matrix if and only if there exist constants ¢; > 0
(i=1,2,...,n)such that

n
cimii + Z cjmij >0, i=1,2,...,n, (6)
J=1j#i
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