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Abstract

In this paper, we study a class of recurrent neural networks (RNNs) arising from optimization problems. By constructing appropriate
Lyapunov functions, we prove two new results on input-to-state convergence of RNNs with variable inputs. Numerical simulations
are also given to demonstrate the convergence of the solutions.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider the following recurrent neural network (RNN) model of nonlinear differential equations

dxi(t)

dt
=

n∑
j=1

aij gj (xj (t)) + Ii(t), i = 1, 2, . . . , n, t �0, (1)

where aij , i, j = 1, 2, . . . , n, are constant connection weights and A = (aij )n×n is the connection matrix, the inputs
Ii(t), i = 1, 2, . . . , n, are continuous functions defined on [0, +∞), and gi(s), i = 1, 2, . . . , n, are the activation
functions of the network. In many applications, the activation functions gi(s) often take the form of sigmoid functions.

The neural network model of the form (1) is different from the well-known Hopfield model as well as the bidirectional
associative memory (BAM) and cellular neural network models ([8]). It does not have a linear term, and the inputs
Ii(t) are functions of t . This class of RNN models have found many applications in solving optimization problems (see
[4–7]) and has been extensively studied in the monograph [8].

For the neural network model (1), an important concept, called input-to-state convergence (ISC), has been proposed
and studied in [8]. The ISC concept is similar to the widely recognized notion of input-to-state stability (ISS), which
has been a useful concept in studying nonlinear control problems (see [2,3]). In this paper, we continue the study of
ISC for the recurrent neural network model (1) and prove two new results. The first result gives new criteria that are
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not seen in the literature. The second result, which is proved using a different and simpler approach, generalizes and
improves Theorem 7.2 from [8]. Examples are also given to illustrate our results.

2. Preliminaries

Let A = (aij )n×n, I (t) = (I1(t), I2(t), . . . , In(t))
T, x(t) = (x1(t), x2(t), . . . , xn(t))

T, and G(x(t)) = (g1(x1(t)),

g2(x2(t)), . . . , gn(xn(t)))
T. We rewrite (1) in a compact vector form

dx(t)

dt
= AG(x(t)) + I (t), t �0. (2)

Throughout the paper, for a given continuous vector function I (t) and a constant vector I , (I (t), I ) will be called an
input pair. Each activation function gi will be assumed to be a sigmoid function satisfying

(1) lims→±∞gi(s) = ±1, |gi(s)|�1, s ∈ R;
(2) 0 < ġi(s) < ġi(0), s ∈ R\{0};
(3) lims→±∞ġi (s) = 0.

Obviously, for each such function gi , its inverse g−1
i exists and is continuous. Typical examples of sigmoid functions

are

tanh(s) = es − e−s

es + e−s
,

1 − e−s

1 + e−s
,

2

�
tan−1

(�

2
s
)

,
1

1 + e−s
.

For any x(0) ∈ Rn, x(t, x(0)) will denote the solution of (1) starting from x(0).
The notion of ISC was first introduced and discussed in [8]. Our definition below is adapted from [8] and appears to

be more appropriate in relating the ISC of the network to its variable input.

Definition 2.1. The network (1), or equivalently (2), is said to be input-to-state convergent (ISC) with respect to an
input pair (I (t), I ), if

�(I )�{x∗ ∈ Rn|AG(x∗) + I = 0} �= ∅ (3)

implies that for any x(0) ∈ Rn, limt→∞x(t, x(0)) = x∗ for some x∗ ∈ �(I ).

For each i = 1, 2, . . . , n, define{
g

i
= inf−∞<s<+∞ gi(s),

gi = sup
−∞<s<+∞

gi(s).
(4)

It is easily seen (see [8]) that if the inverse A−1 = (âij )n×n exists, then the set �(I ) �= ∅ if and only if

−
n∑

j=1

âij Ij ∈ (g
i
, gi), i = 1, 2, . . . , n. (5)

It is also obvious from the assumed monotonicity of the activation functions that if A−1 exists and �(I ) �= ∅, then
�(I ) must be a singleton (i.e., a one-point set).

Recall that a matrix M=(mij )n×n is called an M-matrix if mii > 0 (i=1, 2, . . . , n), mij �0 (i �= j, i, j=1, 2, . . . , n)
and the real part of every eigenvalue of M is non-negative. M is called a non-singular M-matrix if M is both an M-matrix
and non-singular.

It can be shown (see [1]) that a matrix M is a non-singular M-matrix if and only if there exist constants ci > 0
(i = 1, 2, . . . , n) such that

cimii +
n∑

j=1,j �=i

cjmij > 0, i = 1, 2, . . . , n, (6)
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