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Abstract

Low-order models (LOM) described by a system of nth-order (nonlinear) ordinary differential equations (ODE) of the type

ẋi = xTA(i)x + Bix + ci , i = 1, 2, . . . , n

(where x is a column vector, A(i) is a n×n matrix, Bi is a row vector, ci is a scalar and T denotes the transpose) routinely arise when
we apply the Galerkin type projection techniques to the quasi-geostrophic potential vorticity equation (with forcing, dissipation
and topography), Rayleigh–Bernard convection and Burgers’ equation, to mention a few. To our knowledge there is no systematic
method for testing if a given LOM conserves energy. Our goal in this paper is twofold. First, we derive a set of sufficient conditions
on the structural parameters (A(i), Bi and ci for i = 1, 2, . . . , n) for conserving energy. It is well known in Mathematical Physics
that the Volterra gyrostat and many of its special cases including the Euler gyroscope represent a prototype of energy conserving
dynamical systems. It turns out that a special case of our sufficient condition is closely related to the Volterra gyrostats. Exploiting
this relation, we then derive an algorithm for rewriting the LOM (corresponding to the special case of our sufficient conditions) as a
system of coupled gyrostats which brings out the inherent relation between the energy conserving LOM and the system of coupled
gyrostats.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Let x = (x1, x2, . . . , xn)
T ∈ Rn be a (real) column vector denoting the state of a dynamical system whose time

evolution is governed by a system of nonlinear (quadratic type) coupled ordinary differential equations (ODEs) given
by

ẋi = xTA(i)x + Bix + ci , (1.1)

where ẋi = dxi/dt , A(i) ∈ Rn×n is a (real) matrix, Bi ∈ R1×n is a (real) row vector and ci ∈ R is a (real) constant.
Equivalently, in vector form (1.1) can be written as

ẋ = A(x, x) + Bx + c, (1.2)
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where A(x, x) = (xTA(1)x, xTA(2)x, . . . , xTA(n)x)T ∈ Rn is a vector of quadratic forms in x, B ∈ Rn×n is a matrix
with Bi as its ith row and c=(c1, c2, . . . , cn)

T ∈ Rn. An example of a typical system that arises in rigid body mechanics
and in meteorology is given by

ẋ1 = a1x2x3 −
3∑

j=1

b1j xj + c1,

ẋ2 = a2x1x3 −
3∑

j=1

b2j xj + c2,

ẋ3 = a3x1x2 −
3∑

j=1

b3j xj + c3, (1.3)

where

A(1) =
⎛
⎜⎝

0 0 0

0 0 a1

0 0 0

⎞
⎟⎠ , A(2) =

⎛
⎜⎝

0 0 a2

0 0 0

0 0 0

⎞
⎟⎠ , A(3) =

⎛
⎜⎝

0 a3 0

0 0 0

0 0 0

⎞
⎟⎠ .

Let E:Rn → R be given by

E(x) = 1

2

n∑
i=1

Kix
2
i = 1

2
xTKx, (1.4)

where Ki > 0 and K is a diagonal matrix

K = Diag(K1, K2, . . . , Kn). (1.5)

As a positive definite quadratic form, E(x) in (1.4) denotes (generalized) energy.
Our first goal is to derive a set of sufficient conditions on the structural parameters—matrix A(i), row vector Bi and

the scalar ci for i = 1, 2, . . . , n of system (1.1) such that the time derivative Ė(x) of E(x) evaluated along the trajectory
of (1.1) vanishes (identically in x). That is, we are seeking conditions under which (1.1) conserves the energy. One of
the main results is contained in Theorem 2.1 in Section 2.

A little reflection would reveal that we can assume one of the Ki’s is a fixed constant. Without loss of generality, it
is assumed that K1 = 1. All the formulas for Ki are conditioned on this assumption. If, instead, we assume that Ki = 1
for i �= 1, we would obtain a corresponding equivalent set of formulas. Refer to Example 3.3.

Equation of the type (1.2) are called low-order models (LOMs) and routinely arise from the application of Galerkin
type projection techniques [21] to the standard models of interest in fluid mechanics and atmospheric sciences including
the Rayleigh–Bérnard convection equations [20,5], quasi-geostrophic potential vorticity equation [2,3,16–18,12] and
Burgers’ equation [19]. It is well known that while the order n of the resulting LOM depends on the number of modes,
the structure of the resulting matrices A(i) (i = 1, 2, . . . , n), B and the vector c depends critically on the type of modes
(sin 2x or sin 4x) in the orthogonal expansion of the field variable.

Despite this wide popularity of LOM, it seems that there is no guiding principle for the choice of the number and
type of modes leading to LOM that will preserve energy. For example, Howard and Krishnamurthi [9] analyzed a LOM
of order six (hereafter call HK [9] model) for the Rayleigh–Bérnard convection. It turned out that this model while
useful, did not conserve the energy E(x) in (1.4). Later Hermiz et al. [8] and Thiffeault and Horton [22], by adding
more harmonic terms in the spectral expansion for the stream function and the temperature field, obtained an improved
version of the HK [9] model that conserved E(x). Refer to Gluhovsky et al. [7] for details. Our goal in this paper is to
replace this ad hoc approach by a systematic methodology by which one can test if a LOM resulting from this exercise
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