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a b s t r a c t

In this paper we study a rather wide class of quasilinear parabolic problems
with nonlinear boundary condition and nonstandard growth terms. It includes the
important case of equations with a p(t, x)-Laplacian. By means of the localization
method and De Giorgi’s iteration technique we derive global a priori bounds for
weak solutions of such problems. Our results seem to be new even in the constant
exponent case.
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1. Introduction

This paper is concerned with a rather wide class of quasilinear parabolic problems with nonlinear boundary
condition. An important feature of the problems under study is that they may contain nonlinear terms with
variable growth exponents depending on time and space. To be more precise, let Ω ⊂ RN , N > 1, be a
bounded domain with Lipschitz boundary Γ := ∂Ω and let T > 0, QT = (0, T ) × Ω and ΓT = (0, T ) × Γ .
Given p ∈ C(QT ) satisfying 1 < p− = inf(t,x)∈QT

p(t, x), the main purpose of the paper consists in proving
global a priori bounds for weak solutions of parabolic equations of the form

ut − divA(t, x, u,∇u) = B(t, x, u,∇u) in QT ,

A(t, x, u,∇u) · ν = C(t, x, u) on ΓT ,
u(0, x) = u0(x) in Ω .

(1.1)
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Here ν(x) denotes the outer unit normal of Ω at x ∈ Γ , u0 ∈ L2(Ω) and the nonlinearities involved
A : QT × R × RN → RN , B : QT × R × RN → R and C : ΓT × R → R are assumed to satisfy appropriate
p(t, x)-structure conditions which are stated in hypothesis (H), see below. Our setting includes as a special
case parabolic equations with a p(t, x)-Laplacian, which is given by

∆p(t,x)u = div

|∇u|p(t,x)−2∇u


,

and which reduces to the p(x)-Laplacian if p(t, x) = p(x), respectively, to the well-known p-Laplacian in case
p(t, x) ≡ p.

Nonlinear equations of the type considered in (1.1) with variable exponents in the structure con-
ditions are usually termed equations with nonstandard growth. Such equations are of great in-
terest and occur in the mathematical modeling of certain physical phenomena, for example in
fluid dynamics (flows of electro-rheological fluids or fluids with temperature-dependent viscosity), in
nonlinear viscoelasticity, in image processing and in processes of filtration through porous media,
see for example, Acerbi–Mingione–Seregin [1], Antontsev–Dı́az–Shmarev [7], Antontsev–Rodrigues [8],
Chen–Levine–Rao [21], Diening [23], Rajagopal–Růžička [37], Růžička [39] and Zhikov [51,52] and the ref-
erences therein.

Throughout the paper we impose the following conditions.

(H) The functions A : QT × R× RN → RN , B : QT × R× RN → R and C : ΓT × R→ R are Carathéodory
functions satisfying the subsequent structure conditions:

(H1) |A(t, x, s, ξ)| ≤ a0|ξ|p(t,x)−1 + a1|s|q1(t,x) p(t,x)−1
p(t,x) + a2, a.e. in QT ,

(H2) A(t, x, s, ξ) · ξ ≥ a3|ξ|p(t,x) − a4|s|q1(t,x) − a5, a.e. in QT ,

(H3) |B(t, x, s, ξ)| ≤ b0|ξ|p(t,x) q1(t,x)−1
q1(t,x) + b1|s|q1(t,x)−1 + b2, a.e. in QT ,

(H4) |C(t, x, s)| ≤ c0|s|q2(t,x)−1 + c1, a.e. in ΓT ,

for all s ∈ R, all ξ ∈ RN and with positive constants ai, bj , cl. Further, p ∈ C(QT ) with
inf(t,x)∈QT

p(t, x) > 1 and q1 ∈ C(QT ) as well as q2 ∈ C(ΓT ) are chosen such that

p(t, x) ≤ q1(t, x) < p∗(t, x), (t, x) ∈ QT ,
p(t, x) ≤ q2(t, x) < p∗(t, x), (t, x) ∈ ΓT ,

with the critical exponents

p∗(t, x) = p(t, x)N + 2
N

, p∗(t, x) = p(t, x)N + 2
N
− 2
N
.

(P) The exponent p ∈ C(QT ) is log-Hölder continuous on QT , that is, there exists k > 0 such that

|p(t, x)− p(t′, x′)| ≤ k

log

e+ 1

|t−t′|+|x−x′|

 ,
for all (t, x), (t′, x′) ∈ QT .

A function u : QT → R is called a weak solution (subsolution, supersolution) of problem (1.1)
if

u ∈ W :=

v ∈ C


[0, T ];L2(Ω)


: |∇v| ∈ Lp(·,·)(QT )
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