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a b s t r a c t

This paper deals with existence results for a nonlinear boundary value problem
derived from a model introduced by Lebowitz and Rubinow (1974) describing a
proliferating cell population. Cells are distinguished by age a and cycle length l. The
cycle length is viewed as an inherited property determined at birth. The boundary
condition models the process of cell division of mother cells and the inheritance of
cycle length by daughter cells. In our framework, daughter cells and mother cells are
related by a general reproduction rule which covers all known biological ones. In this
work, the cycle length l is allowed to be infinite, that is, l ∈ [l1,+∞). This hypothesis
introduces some mathematical difficulties which are overcome by using domination
arguments (in the lattice sense) and recent fixed point theorems involving continuous
weakly compact operators on non reflexive Banach spaces.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to establish some existence results for the following nonlinear integro-
differential equation

∂ψ

∂a
(a, l) + λψ(a, l) + σ(a, l, ψ(a, l)) =

 +∞

l1

κ(a, l, l′)f(a, l′, ψ(a, l′))χΩ (a, l′)dl′, (1)

where λ is a real number and χΩ denotes the characteristic function of the set

Ω :=


(a, l); 0 < a < l, 0 < l1 < l < +∞

.
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This equation is derived from an age-structured proliferating cell population model with inherited properties
introduced by Lebowitz and Rubinow [17]. The variable l denotes the cycle length of individual cells which
is the time between cell birth and cell division. The cell cycle length of individual cells is an inherent
characteristic determined at birth. The variable a is the age of the individual cells. It is defined so that cells
born at a = 0 (daughter cells) and divide at a = l (mother cells). The constant l1 is the minimum cycle
length of cells while the maximum cycle length of cells is allowed to be infinite (l2 = +∞). Here ψ(a, l)
denotes the density of the population with respect to age a and cell cycle length l. The function σ(·, ·, ·) is
the rate of cells mortality or loss due to causes other than division, f(·, ·, ·) is a measurable function from
Ω × R into R and κ(·, ·, ·) is a measurable function from R+ × [l1,+∞)× [l1,+∞) into R.

The model originally proposed by Lebowitz and Rubinow [17] is a linear partial differential equation,
but as observed by Rotenberg [21], it seems that the linear model is not adequate. Indeed, the cells under
consideration are in contact with a nutrient environment which is not part of the mathematical formulation.
Fluctuations in nutrient concentration and other density-dependent effects such as contact inhibition of
growth make the transition rates functions of the population density, thus creating a nonlinear problem.
So the rate of cell mortality σ(·, ·, ·) and the function f(·, ·, ·) are assumed to be nonlinear functions of the
density of cells ψ(·, ·). On the other hand, the biological boundary is fixed and tightly coupled through
out mitosis and the conditions present at the boundaries are felt throughout the system and cannot be
remote. This phenomena suggest that at mitosis daughter cells and parent cells are related by a nonlinear
reproduction rule which describes the boundary conditions. It writes in the shape

ψ(0, l) = (Rψ)(l, l), (2)

where R stands for a nonlinear operator which is intended to model the transition from mother cells of cycle
length l to daughter cells of cycle length l. It covers, in particular, the usual biological models (cf. [17,23,24,
13,19] and the references therein).

The model (1)–(2) has been analyzed in [11] in Lp-spaces, 1 < p < ∞, in the case where the maximum
cycle length (l2 < +∞) is finite. The analysis follows the same strategy as that used by the second author
in [12] in the context of rarefied gas dynamics. It is based essentially on compactness results established
only for 1 < p < ∞ and uses the Schauder and Krasnosel’skii fixed point theorems. Due to the lack of
compactness in L1-spaces, this approach fails in the L1 context (which is the convenient and natural setting
of the problem because ψ(a, l) has the meaning of a density of cells with respect to the age a and the cells
cycle length l). The case of L1-spaces was considered in [15]. The approach is based on topological methods
and uses the specific properties of weakly compact sets in L1-spaces. Note also that the well-posedness
of nonlinear evolution equations derived from the model of Lebowitz and Rubinow was discussed in the
works [22,10,1,2]. The main purpose of this paper is to present an existence theory for the boundary value
problem (1)–(2) on L1-spaces in the case where the maximum cycle length is infinite (l2 = +∞).

The organization of this paper is as follows. In Section 2 we introduce the functional setting of the problem
and we establish some preliminary results. We recall some facts from functional analysis and two fixed point
theorems established in [14,16] needed in the sequel. We also introduce a measure of weak noncompactness
adapted to the problem. In Section 3, establish an existence result for the boundary value problem (1)–(2) (cf.
Theorem 3.1) in the special case where σ(a, l, ψ(a, l)) = σ(a, l)ψ(a, l) (σ is not relabeled) is a multiplication
operator. The proof of this result consists in writing problem (1)–(2) as a fixed point problem involving a
nonlinear ws-compact operator, depending on the real λ,Gλ, and we show that it satisfies the hypotheses of
Theorem 2.1 on an appropriate subset of L1(Ω). Existence results for the general boundary value problem
(1)–(2) (i.e. σ(·, ·, ·) is a nonlinear function of ψ(·, ·)) is the subject of Theorem 3.2. In order to transform
(1)–(2) into a fixed point problem, the additivity of the transition operator R (and consequently its linearity
because it is continuous) is required. Under this hypothesis, we first transform (1)–(2) into a fixed point
problem involving two nonlinear operators depending on the real number λ, say, ψ = F(λ)ψ + H(λ)ψ.
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