Contents lists available at [ScienceDirect](http://www.sciencedirect.com)

Nonlinear Analysis

www.elsevier.com/locate/na

The first initial–boundary value problem for Hessian equations of parabolic type on Riemannian manifolds

Gejun Bao, Weisong Dong, Heming Jiao [∗](#page-0-0)

Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China

a r t i c l e i n f o

Article history: Received 13 September 2015 Accepted 9 May 2016 Communicated by Enzo Mitidieri

MSC: 35B45 35R01 35K20 35K96

Keywords: Riemannian manifolds Fully nonlinear parabolic equations First initial–boundary value problem *a priori* estimates

1. Introduction

In this paper, we study the Hessian equations of parabolic type of the form

$$
f(\lambda(\nabla^2 u + \chi), -u_t) = \psi(x, t)
$$
\n(1.1)

in $M_T = M \times (0,T] \subset M \times \mathbb{R}$ satisfying the boundary condition

$$
u = \varphi, \quad \text{on } \mathcal{P}M_T,\tag{1.2}
$$

where (*M, g*) is a compact Riemannian manifold of dimension *n* ≥ 2 with smooth boundary *∂M* and \overline{M} := $M \cup \partial M$, $\mathcal{P}M_T = BM_T \cup SM_T$ is the parabolic boundary of M_T with $BM_T = M \times \{0\}$ and $SM_T = \partial M \times [0, T]$, *f* is a symmetric smooth function of $n+1$ variables, $\nabla^2 u$ denotes the Hessian of $u(x, t)$ with respect to $x \in M$, $u_t = \frac{\partial u}{\partial t}$ is the derivative of $u(x, t)$ with respect to $t \in [0, T]$, χ is a smooth $(0, 2)$ tensor on \overline{M} and $\lambda(\nabla^2 u + \chi) = (\lambda_1, \ldots, \lambda_n)$ denotes the eigenvalues of $\nabla^2 u + \chi$ with respect to the metric *g*.

[∗] Corresponding author.

<http://dx.doi.org/10.1016/j.na.2016.05.005>

a b s t r a c t

In this paper, we are concerned with the first initial–boundary value problem for a class of fully nonlinear parabolic equations on Riemannian manifolds. As usual, the establishment of the *a priori* C^2 estimates is our main part. Based on these estimates, the existence of classical solutions is proved under conditions which are nearly optimal.

© 2016 Elsevier Ltd. All rights reserved.

CrossMark

Nonlinear Analysis

E-mail addresses: baogj@hit.edu.cn (G. Bao), dweeson@gmail.com (W. Dong), jiao@hit.edu.cn (H. Jiao).

⁰³⁶²⁻⁵⁴⁶X/© 2016 Elsevier Ltd. All rights reserved.

We assume f to be defined in an open convex cone $\Gamma \subset \mathbb{R}^{n+1}$ with vertex at the origin satisfying

$$
\varGamma_{n+1}\equiv\{\lambda\in\mathbb{R}^{n+1}:\text{ each component }\lambda_i>0,\;1\leq i\leq n+1\}\subseteq\varGamma\neq\mathbb{R}^{n+1}
$$

and furthermore, Γ is invariant under interchange of any two λ_i , i.e. it is symmetric.

In this work, f is assumed to satisfy the following structural conditions as in $[3]$ (see $[9]$ also):

$$
f_i \equiv \frac{\partial f}{\partial \lambda_i} > 0 \text{ in } \Gamma, \quad 1 \le i \le n+1,
$$
\n(1.3)

 f is concave in Γ (1.4)

and

$$
\delta_{\psi,f} \equiv \inf_{M_T} \psi - \sup_{\partial \Gamma} f > 0, \quad \text{where } \sup_{\partial \Gamma} f \equiv \sup_{\lambda_0 \in \partial \Gamma} \limsup_{\lambda \to \lambda_0} f(\lambda). \tag{1.5}
$$

In this work we are interested in the existence of classical solutions to (1.1) – (1.2) . Recent research on the Hessian equations of elliptic type (see $[9,7]$ $[9,7]$):

$$
f(\lambda(\nabla^2 u + \chi)) = \psi(x) \tag{1.6}
$$

provides some ideas to deal with our Eq. [\(1.1\)](#page-0-1) under nearly minimal restrictions on *f*.

The most typical examples of *f* satisfying (1.3) – (1.5) are $f = \sigma_k^{1/k}$ $\int_{k}^{1/k}$ and $f = (\sigma_k/\sigma_l)^{1/(k-l)}$, $1 \leq l < k \leq$ $n + 1$, defined in the Gårding cone

$$
\Gamma_k = \{ \lambda \in \mathbb{R}^{n+1} : \sigma_j(\lambda) > 0, \ j = 1, \dots, k \},
$$

where σ_k are the elementary symmetric functions

$$
\sigma_k(\lambda) = \sum_{i_1 < \dots < i_k} \lambda_{i_1} \dots \lambda_{i_k}, \quad k = 1, \dots, n+1.
$$

When $f = \sigma_{n+1}^{1/(n+1)}$, Eq. [\(1.1\)](#page-0-1) can be written as the parabolic Monge–Ampère equation:

$$
-u_t \det(\nabla^2 u + \chi) = \psi^{n+1},\tag{1.7}
$$

which was introduced by Krylov in [\[19\]](#page--1-3) when $\chi = 0$ in Euclidean space. Instead of the determinant in [\(1.7\),](#page-1-1) Ren [\[25\]](#page--1-4) studied equations of the form

$$
-u_t f(\lambda(\nabla^2 u)) = \psi(x, t). \tag{1.8}
$$

Our interest to study [\(1.1\)](#page-0-1) is from their natural connection to the deformation of surfaces by some curvature functions. For example, Eq. [\(1.7\)](#page-1-1) plays a key role in the study of contraction of surfaces by Gauss–Kronecker curvature (see Firey [\[5\]](#page--1-5) and Tso [\[28\]](#page--1-6)). For the study of more general curvature flows, the reader is referred to [\[1](#page--1-7)[,2,](#page--1-8)[14,](#page--1-9)[24\]](#page--1-10) and their references. [\(1.7\)](#page-1-1) is also relevant to a maximum principle for parabolic equations (see Tso [\[29\]](#page--1-11)).

In [\[23\]](#page--1-12), Lieberman studied the first initial–boundary value problem of Eq. [\(1.1\)](#page-0-1) when $\chi \equiv 0$ and ψ may depend on *u* and ∇u in a bounded domain $\Omega \subset \mathbb{R}^{n+1}$ under various conditions. Jiao and Sui [\[18\]](#page--1-13) considered parabolic Hessian equations of the form

$$
f(\lambda(\nabla^2 u + \chi)) - u_t = \psi(x, t) \tag{1.9}
$$

on Riemannian manifolds under an additional condition which was introduced in [\[10\]](#page--1-14)

$$
T_{\lambda} \cap \partial \Gamma^{\sigma} \text{ is a nonempty compact set, } \forall \lambda \in \Gamma \text{ and } \sup_{\partial \Gamma} f < \sigma < f(\lambda), \tag{1.10}
$$

where $\partial \Gamma^{\sigma} = {\lambda \in \Gamma : f(\lambda) = \sigma}$ is the boundary of $\Gamma^{\sigma} = {\lambda \in \Gamma : f(\lambda) > \sigma}$ and T_{λ} denote the tangent plane at λ of $\partial \Gamma^{f(\lambda)}$, for $\sigma > \sup_{\partial \Gamma} f$ and $\lambda \in \Gamma$. Eq. [\(1.9\)](#page-1-2) in domains of \mathbb{R}^n was also studied by Ivochkina Download English Version:

<https://daneshyari.com/en/article/839185>

Download Persian Version:

<https://daneshyari.com/article/839185>

[Daneshyari.com](https://daneshyari.com)