Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

# The first initial-boundary value problem for Hessian equations of parabolic type on Riemannian manifolds

Gejun Bao, Weisong Dong, Heming Jiao\*

Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China

### ARTICLE INFO

Article history: Received 13 September 2015 Accepted 9 May 2016 Communicated by Enzo Mitidieri

MSC: 35B45 35R01 35K20 35K96

Keywords: Riemannian manifolds Fully nonlinear parabolic equations First initial-boundary value problem *a priori* estimates

## 1. Introduction

In this paper, we study the Hessian equations of parabolic type of the form

$$f(\lambda(\nabla^2 u + \chi), -u_t) = \psi(x, t) \tag{1.1}$$

in  $M_T = M \times (0, T] \subset M \times \mathbb{R}$  satisfying the boundary condition

$$u = \varphi, \quad \text{on } \mathcal{P}M_T,$$
 (1.2)

where (M,g) is a compact Riemannian manifold of dimension  $n \geq 2$  with smooth boundary  $\partial M$  and  $\overline{M} := M \cup \partial M$ ,  $\mathcal{P}M_T = BM_T \cup SM_T$  is the parabolic boundary of  $M_T$  with  $BM_T = M \times \{0\}$  and  $SM_T = \partial M \times [0,T]$ , f is a symmetric smooth function of n+1 variables,  $\nabla^2 u$  denotes the Hessian of u(x,t)with respect to  $x \in M$ ,  $u_t = \frac{\partial u}{\partial t}$  is the derivative of u(x,t) with respect to  $t \in [0,T]$ ,  $\chi$  is a smooth (0, 2) tensor on  $\overline{M}$  and  $\lambda(\nabla^2 u + \chi) = (\widehat{\lambda}_1, \ldots, \widehat{\lambda}_n)$  denotes the eigenvalues of  $\nabla^2 u + \chi$  with respect to the metric g.

\* Corresponding author.

http://dx.doi.org/10.1016/j.na.2016.05.005

#### ABSTRACT

In this paper, we are concerned with the first initial-boundary value problem for a class of fully nonlinear parabolic equations on Riemannian manifolds. As usual, the establishment of the *a priori*  $C^2$  estimates is our main part. Based on these estimates, the existence of classical solutions is proved under conditions which are nearly optimal.

 $\odot$  2016 Elsevier Ltd. All rights reserved.







E-mail addresses: baogj@hit.edu.cn (G. Bao), dweeson@gmail.com (W. Dong), jiao@hit.edu.cn (H. Jiao).

<sup>0362-546</sup>X/ $\odot$  2016 Elsevier Ltd. All rights reserved.

We assume f to be defined in an open convex cone  $\Gamma \subset \mathbb{R}^{n+1}$  with vertex at the origin satisfying

$$\Gamma_{n+1} \equiv \{\lambda \in \mathbb{R}^{n+1} : \text{ each component } \lambda_i > 0, \ 1 \le i \le n+1\} \subseteq \Gamma \neq \mathbb{R}^{n+1}$$

and furthermore,  $\Gamma$  is invariant under interchange of any two  $\lambda_i$ , i.e. it is symmetric.

In this work, f is assumed to satisfy the following structural conditions as in [3] (see [9] also):

$$f_i \equiv \frac{\partial f}{\partial \lambda_i} > 0 \text{ in } \Gamma, \quad 1 \le i \le n+1, \tag{1.3}$$

f is concave in  $\Gamma$  (1.4)

and

$$\delta_{\psi,f} \equiv \inf_{M_T} \psi - \sup_{\partial \Gamma} f > 0, \quad \text{where } \sup_{\partial \Gamma} f \equiv \sup_{\lambda_0 \in \partial \Gamma} \limsup_{\lambda \to \lambda_0} f(\lambda).$$
(1.5)

In this work we are interested in the existence of classical solutions to (1.1)-(1.2). Recent research on the Hessian equations of elliptic type (see [9,7]):

$$f(\lambda(\nabla^2 u + \chi)) = \psi(x) \tag{1.6}$$

provides some ideas to deal with our Eq. (1.1) under nearly minimal restrictions on f.

The most typical examples of f satisfying (1.3)–(1.5) are  $f = \sigma_k^{1/k}$  and  $f = (\sigma_k/\sigma_l)^{1/(k-l)}$ ,  $1 \le l < k \le n+1$ , defined in the Gårding cone

$$\Gamma_k = \{\lambda \in \mathbb{R}^{n+1} : \sigma_j(\lambda) > 0, \ j = 1, \dots, k\},\$$

where  $\sigma_k$  are the elementary symmetric functions

$$\sigma_k(\lambda) = \sum_{i_1 < \dots < i_k} \lambda_{i_1} \dots \lambda_{i_k}, \quad k = 1, \dots, n+1.$$

When  $f = \sigma_{n+1}^{1/(n+1)}$ , Eq. (1.1) can be written as the parabolic Monge–Ampère equation:

$$-u_t \det(\nabla^2 u + \chi) = \psi^{n+1}, \qquad (1.7)$$

which was introduced by Krylov in [19] when  $\chi = 0$  in Euclidean space. Instead of the determinant in (1.7), Ren [25] studied equations of the form

$$-u_t f(\lambda(\nabla^2 u)) = \psi(x, t). \tag{1.8}$$

Our interest to study (1.1) is from their natural connection to the deformation of surfaces by some curvature functions. For example, Eq. (1.7) plays a key role in the study of contraction of surfaces by Gauss–Kronecker curvature (see Firey [5] and Tso [28]). For the study of more general curvature flows, the reader is referred to [1,2,14,24] and their references. (1.7) is also relevant to a maximum principle for parabolic equations (see Tso [29]).

In [23], Lieberman studied the first initial-boundary value problem of Eq. (1.1) when  $\chi \equiv 0$  and  $\psi$  may depend on u and  $\nabla u$  in a bounded domain  $\Omega \subset \mathbb{R}^{n+1}$  under various conditions. Jiao and Sui [18] considered parabolic Hessian equations of the form

$$f(\lambda(\nabla^2 u + \chi)) - u_t = \psi(x, t) \tag{1.9}$$

on Riemannian manifolds under an additional condition which was introduced in [10]

$$T_{\lambda} \cap \partial \Gamma^{\sigma}$$
 is a nonempty compact set,  $\forall \lambda \in \Gamma$  and  $\sup_{\partial \Gamma} f < \sigma < f(\lambda)$ , (1.10)

where  $\partial \Gamma^{\sigma} = \{\lambda \in \Gamma : f(\lambda) = \sigma\}$  is the boundary of  $\Gamma^{\sigma} = \{\lambda \in \Gamma : f(\lambda) > \sigma\}$  and  $T_{\lambda}$  denote the tangent plane at  $\lambda$  of  $\partial \Gamma^{f(\lambda)}$ , for  $\sigma > \sup_{\partial \Gamma} f$  and  $\lambda \in \Gamma$ . Eq. (1.9) in domains of  $\mathbb{R}^n$  was also studied by Ivochkina

Download English Version:

# https://daneshyari.com/en/article/839185

Download Persian Version:

https://daneshyari.com/article/839185

Daneshyari.com