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a b s t r a c t

Let p(·) : Rn → (0, 1] be a variable exponent function satisfying the globally log-
Hölder continuous condition and L a non-negative self-adjoint operator on L2(Rn)
whose heat kernels satisfying the Gaussian upper bound estimates. Let Hp(·)

L (Rn)
be the variable exponent Hardy space defined via the Lusin area function associated
with the heat kernels {e−t2L}t∈(0,∞). In this article, the authors first establish the
atomic characterization of Hp(·)

L (Rn); using this, the authors then obtain its non-
tangential maximal function characterization which, when p(·) is a constant in (0, 1],
coincides with a recent result by L. Song and L. Yan (2016) and further induces
the radial maximal function characterization of Hp(·)

L (Rn) under an additional
assumption that the heat kernels of L have the Hölder regularity.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The main purpose of this article is to establish the non-tangential or radial maximal function
characterizations of the Hardy space Hp(·)

L (Rn) introduced in [49]. Recall that the theory of classical Hardy
spaces on the Euclidean space Rn was introduced and developed in the 1960s and 1970s. Precisely, the
real-variable theory of Hardy spaces on Rn was initiated by Stein and Weiss [43] and then systematically
developed by Fefferman and Stein [24], which has played an important role in modern harmonic analysis
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and been widely used in partial differential equations (see, for example, [12,24,42]). As is well known, the
classical Hardy space is intimately connected with the Laplace operator ∆ := −

n
i=1 ∂

2
xi on Rn. Indeed,

for p ∈ (0, 1], the Hardy space Hp(Rn) consists of all f ∈ S ′(Rn) (the set of all tempered distributions) such
that the area integral function

S(f)(·) :=
 ∞

0


|y−·|<t

t2∆e−t2∆(f)(y)
2 dydt

tn+1

 1
2

belongs to Lp(Rn). Moreover, for p ∈ (0, 1], the Hardy space Hp(Rn) involves several different equivalent
characterizations, for example, if f ∈ S ′(Rn), then

f ∈ Hp(Rn)⇐⇒ sup
t∈(0,∞)

e−t2∆(f)
 ∈ Lp(Rn)

⇐⇒ sup
t∈(0,∞), |y−·|<t

e−t2∆(f)(y)
 ∈ Lp(Rn).

Also, it is well known that the Hardy space Hp(Rn), with p ∈ (0, 1], is a suitable substitute of the Lebesgue
space Lp(Rn), for example, the classical Riesz transform is bounded on Hp(Rn), but not on Lp(Rn) when
p ∈ (0, 1]. However, in many situations, the standard theory of Hardy spaces is not applicable, for example,
the Riesz transform ∇L−1/2 may not be bounded from the Hardy space H1(Rn) to L1(Rn) when L is
a second-order divergence form elliptic operator with complex bounded measurable coefficients (see [29]).
Motivated by this, the topic for developing a real-variable theory of Hardy spaces that are adapted to
different differential operators has inspired great interests in the last decade and has become a very active
research topic in harmonic analysis (see, for example, [3,6,21–23,28,29,31,33,45,46,49]).

Particularly, let L be a linear operator on L2(Rn) and generate an analytic semigroup {e−tL}t>0 with
heat kernels having pointwise upper bounds. Then, by using the Lusin area function associated with these
heat kernels, Auscher, Duong and McIntosh [3] initially studied the Hardy space H1

L(Rn) associated with the
operator L. Based on this, Duong and Yan [21,22] introduced the BMO-type space BMOL(Rn) associated
with L and proved that the dual space of H1

L(Rn) is just BMOL∗(Rn), where L∗ denotes the adjoint operator
of L in L2(Rn). Later, Yan [45] further generalized these results to the Hardy spaces Hp

L(Rn) with p close to,
but less than, 1 and, more generally, the Orlicz–Hardy space associated with such operator was investigated
by Jiang et al. [33]. Very recently, under the assumption that L is a non-negative self-adjoint operator whose
heat kernels satisfying Gaussian upper bound estimates, Song and Yan [41] established a characterization
of Hardy spaces Hp

L(Rn) via the non-tangential maximal function associated with the heat semigroup of
L based on a subtle modification of technique due to Calderón [8], which was further generalized into the
Musielak–Orlicz–Hardy space in [47].

Another research direction of generalized Hardy spaces is the variable exponent Hardy space, which also
extends the variable Lebesgue space. Recall that the variable Lebesgue space Lp(·)(Rn), with a variable
exponent p(·) : Rn → (0,∞), consists of all measurable functions f such that


Rn |f(x)|p(x) dx < ∞. The

study of variable Lebesgue spaces can be traced back to Birnbaum–Orlicz [5] and Orlicz [37], but the modern
development started with the article [34] of Kováčik and Rákosńık as well as [13] of Cruz-Uribe and [17] of
Diening, and nowadays have been widely used in harmonic analysis (see, for example, [14,18]). Moreover,
variable function spaces also have interesting applications in fluid dynamics [1,38], image processing [10],
partial differential equations and variational calculus [2,27,39]. Recall that the variable exponent Hardy space
Hp(·)(Rn) was introduced by Nakai and Sawano [36] and, independently, by Cruz-Uribe and Wang [16] with
some weaker assumptions on p(·) than those used in [36], which was further investigated by Sawano [40],
Zhuo et al. [51] and Yang et al. [50].

Let p(·) : Rn → (0, 1] be a variable exponent function satisfying the globally log-Hölder continuous
condition. Very recently, the authors [49] introduced the Hardy space Hp(·)

L (Rn) via the Lusin area function
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