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a b s t r a c t

Nondominated sorting is a combinatorial algorithm that sorts points in Euclidean
space into layers according to a partial order. It was recently shown that nondom-
inated sorting of random points has a Hamilton–Jacobi equation continuum limit.
The original proof, given in Calder et al. (2014), relies on a continuum variational
problem. In this paper, we give a new proof using a direct verification argument that
completely avoids the variational interpretation. We believe this may be generalized
to apply to other stochastic homogenization problems for which there is no obvious
underlying variational principle.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Many problems in science and engineering require the sorting, or ordering, of large amounts of multivariate
data. Since there is no canonical linear criterion for sorting data in dimensions greater than one, many
different methods for sorting have been proposed to address various problems (see, e.g., [7,57,46,16]). Many
of these algorithms abandon the idea of a linear ordering, and instead sort the data into layers according to
some set of criteria.

We consider here nondominated sorting, which arranges a set of points in Euclidean space into layers
by repeatedly removing the set of minimal elements. Let 5 denote the coordinatewise partial order on Rd

defined by

x 5 y ⇐⇒ xi ≤ yi for all i.

✩ The research described in this paper was partially supported by National Science Foundation grant DMS-1500829.
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(a) i.i.d. samples. (b) n = 104 points. (c) n = 106 points.

Fig. 1. Examples of Pareto fronts corresponding to i.i.d. random variables X1, . . . , Xn drawn from the distribution depicted in (a).
In (b) and (c), we show 30 evenly spaced Pareto fronts for n = 104 and n = 106, respectively.

The first nondominated layer, also called the first Pareto front and denoted F1, is exactly the set of minimal
elements of S with respect to 5, and the deeper fronts are defined recursively as follows:

Fk = Minimal elements of S \

i<k

Fi.

This peeling process eventually exhausts the entire set S, and the result is a partition of S based on Pareto
front index, which is often called Pareto depth or rank. Fig. 1 gives an illustration of nondominated sorting
of a random set S.

Nondominated sorting is widely used in multi-objective optimization, where it is the basis of the popular
and effective genetic and evolutionary algorithms [16,21,22,15,60]. Of course, multi-objective optimization is
ubiquitous in engineering and scientific contexts, such as control theory and path planning [49,42,48], gene
selection and ranking [59,29,28,30,18–20], data clustering [27], database systems [39,51,31], image processing
and computer vision [50,14], and some recent machine learning problems [31–33].

Nondominated sorting is also equivalent to the longest chain problem, which has a long history in
probability and combinatorics [63,26,9,17]. A chain in Rd is a finite sequence of points that is totally ordered
with respect to 5. Let X1, . . . , Xn be n distinct points in Rd and define

Un(x) = ℓ({X1, . . . , Xn} ∩ [0, x]), (1.1)

where ℓ(O) denotes the length of a longest chain in the finite set O ⊆ Rd. The notation [0, x] is a special
case of the more general interval notation

[x, z] =

y ∈ Rd : x 5 y 5 z


=
d
i=1

[xi, zi]

that we shall use throughout the paper. Let F1,F2,F3, . . . denote the Pareto fronts obtained by applying
nondominated sorting to S := {X1, . . . , Xn}. Then x ∈ F1 if and only if there are no other points y ∈ S
with y 5 x, i.e., Un(x) = 1. A point x ∈ S is on the second Pareto front F2 if and only if all points y ∈ S
satisfying y 5 x are on the first front, and one such point exists. For any such y ∈ F1, {y, x} is a chain of
length ℓ = 2 in S ∩ [0, x], and we see that x ∈ F2 ⇐⇒ Un(x) = 2. Peeling off successive Pareto fronts and
repeating this argument yields

x ∈ Fk ⇐⇒ Un(x) = k.

Hence, the Pareto fronts F1,F2,F3, . . . are embedded into the level sets (or jump sets) of the longest chain
function Un, as depicted in Fig. 1.

In [12], we proved the following continuum limit for nondominated sorting.
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