

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

On the free boundary problem for the Oldroyd-B Model in the maximal L_p - L_q regularity class

Sri Marvani*

Department of Pure and Applied Mathematics, Graduate School of Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan

ARTICLE INFO

Article history: Received 11 January 2016 Accepted 31 March 2016 Communicated by S. Carl

MSC: 35Q35 76N10

 $\label{eq:Keywords:} Keywords: \\ \mbox{Non-Newtonian compressible viscous} \\ \mbox{barotropic fluid flow} \\ \mbox{Oldroyd B type} \\ \mbox{Local well-posedness} \\ \mbox{Maximal } L_p - L_q \mbox{ regularity} \\$

ABSTRACT

In the present work, we prove the local well-posedness of non-Newtonian compressible viscous barotropic fluid flow of Oldroyd-B type with free surface in a bounded domain of N-dimensional Euclidean space ($N \geq 2$). The key step is to prove the maximal $L_p - L_q$ regularity theorem for the linearized equation with the help of the \mathcal{R} -bounded solution operators for the corresponding resolvent problem and Weis's operator valued Fourier multiplier theorem.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and main result

Let Ω be a bounded domain in the N-dimensional Euclidean space \mathbb{R}^N ($N \geq 2$) whose boundary consists of two parts Γ_0 and Γ_1 , where $\Gamma_0 \cap \Gamma_1 = \emptyset$. The Ω is occupied by a compressible viscous barotropic non-Newtonian fluid of Oldroyd-B type. The present paper deals with the problem of determining the region $\Omega_t \subset \mathbb{R}^N$, the density field $\rho = \rho(x,t)$, the elastic tensor $\tau = \tau(x,t)$, and the velocity field $\mathbf{u} = (u_1(x,t), \dots, u_N(x,t))$, which satisfy the system of equations:

$$\begin{cases}
\partial_{t}\rho + \operatorname{div}(\rho \mathbf{u}) &= 0 & \text{in } \Omega_{t}, \\
\rho(\partial_{t}\mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u}) - \operatorname{Div} \mathbf{T}(\mathbf{u}, P(\rho)) &= \beta \operatorname{Div} \tau & \text{in } \Omega_{t}, \\
\partial_{t}\tau + \mathbf{u} \cdot \nabla \tau + \gamma \tau &= \delta \mathbf{D}(\mathbf{u}) + g_{\alpha}(\nabla \mathbf{u}, \tau) & \text{in } \Omega_{t}, \\
(\mathbf{T}(\mathbf{u}, P(\rho)) + \beta \tau) \mathbf{n}_{t} &= -P(\rho_{*}) \mathbf{n}_{t} & \text{on } \Gamma_{t}, \\
\mathbf{u} &= 0 & \text{on } \Gamma_{0}, \\
(\rho, \mathbf{u}, \tau)|_{t=0} &= (\rho_{*} + \theta_{0}, \mathbf{u}_{0}, \tau_{0}) & \text{in } \Omega, \\
\Omega_{t}|_{t=0} = \Omega_{0}, \quad \Gamma_{t}|_{t=0} &= \Gamma_{1}
\end{cases} \tag{1.1}$$

^{*} Correspondence to: Department of Mathematics, Jenderal Soedirman University, Indonesia. Tel.: +81 3 5286 3000. E-mail address: sri.maryani@fuji.waseda.jp.

for 0 < t < T. Here, ρ_* is a positive constant describing the mass density of the reference domain Ω , $\mathbf{T}(\mathbf{u}, P(\rho))$ the stress tensor of the form

$$\mathbf{T}(\mathbf{u}, \rho) = \mathbf{S}(\mathbf{u}) - P(\rho)\mathbf{I} \text{ with } \mathbf{S}(\mathbf{u}) = \mu \mathbf{D}(\mathbf{u}) + (\nu - \mu) \text{div } \mathbf{u}\mathbf{I},$$
 (1.2)

 $\mathbf{D}(\mathbf{u})$ the doubled deformation tensor whose (i,j) components are $D_{ij}(\mathbf{u}) = \partial_i u_j + \partial_j u_i$ ($\partial_i = \partial/\partial x_j$), **I** the $N \times N$ identity matrix, μ , ν , β , γ and δ are positive constants (μ and ν are the first and second viscosity coefficients, respectively), \mathbf{n}_t is the unit outer normal to Γ_t , $P(\rho)$ a C^{∞} function defined for $\rho > 0$ which satisfies that $P'(\rho) > 0$ for $\rho > 0$. Moreover, the function $g_{\alpha}(\nabla \mathbf{u}, \tau)$ has a form

$$q_{\alpha}(\nabla \mathbf{u}, \tau) = \mathbf{W}(\mathbf{u})\tau - \tau \mathbf{W}(\mathbf{u}) + \alpha(\tau \mathbf{D}(\mathbf{u}) + \mathbf{D}(\mathbf{u})\tau), \tag{1.3}$$

where α is a constant with $-1 \leq \alpha \leq 1$ and $\mathbf{W}(\mathbf{u})$ the doubled antisymmetric part of the gradient $\nabla \mathbf{u}$ whose (i,j) components are $W_{ij}(\mathbf{u}) = \partial_i u_j - \partial_j u_i$. Finally, for any matrix field \mathbf{K} whose components are K_{ij} , the quantity Div \mathbf{K} is an N vector whose ith component is $\sum_{j=1}^{N} \partial_j K_{ij}$, and also for any vector of functions $\mathbf{u} = (u_1, \dots, u_N)$, div $\mathbf{u} = \sum_{j=1}^{N} \partial_j u_j$, and $\mathbf{u} \cdot \nabla \mathbf{u}$ is an N vector whose ith component is $\sum_{j=1}^{N} u_j \partial_j u_i$. We assume that the boundary of Ω_t consists of Γ_0 and Γ_t with $\Gamma_0 \cap \Gamma_t = \emptyset$.

Aside from the dynamical system (1.1), a further kinematic condition for Γ_t is satisfied, which gives

$$\Gamma_t = \{ x \in \mathbb{R}^N \mid x = \mathbf{x}(\xi, t) \ (\xi \in \Gamma_1) \}, \tag{1.4}$$

where $\mathbf{x} = \mathbf{x}(\xi, t)$ is the solution to the Cauchy problem:

$$\Gamma_t = \{ x \in \mathbb{R}^N \mid x = \mathbf{x}(\xi, t) \ (\xi \in \Gamma_1) \}. \tag{1.5}$$

Concerning the free boundary problem of the viscous compressible barotropic Newtonian fluid flow, the local well-posedness and global well-posedness have been studied in the L_2 Sobolev–Slobodetskii space by Denisova and Solonnikov [4,3], Secchi and Valli [17–19], Solonnikov and Tani [28,30,31], and Zajaczkowski [34,35], and in the L_p – L_q maximal regularity class by Shibata et al. [7,24]. Recently, M. Nesensohn [14] proved the local well-posedness of the free boundary problem for the non-Newtonian fluid flow of Oldroyd-B type in the incompressible viscous fluid case (further references are found in [14]). On the other hand, Shi, Wang and Zhang [20] investigated the asymptotic stability for 1-dimensional motion of non-Newtonian compressible fluids using L_2 energy method. Meanwhile, global existence of strong solutions of Navier–Stokes equations with non-Newtonian potential for 1-dimensional isentropic compressible fluids has been studied by Liu, Yuan and Lie [9]. The purpose of this paper is to study the local well-posedness of problem (1.1).

To prove the local well-posedness of problem (1.1), we use the Lagrangian coordinate in order to transform the time dependent domain Ω_t to the fixed domain Ω . Let $\mathbf{u}(x,t)$ and $\mathbf{v}(\xi,t)$ be velocity fields in the Euler coordinate and in the Lagrangian coordinate, respectively. The Euler coordinate system $\{x\}$ and Lagrangian coordinate system $\{\xi\}$ are connected by the relation:

$$x = \xi + \int_0^t \mathbf{v}(\xi, s) ds \equiv \mathbf{X}_{\mathbf{v}}(\xi, t),$$

where, $\mathbf{v}(\xi,t) = (v_1(\xi,t), \dots, v_N(\xi,t)) = \mathbf{u}(\mathbf{X}_{\mathbf{v}}(\xi,t),t)$. Let A be the Jacobi matrix of the transformation $x = \mathbf{X}_{\mathbf{v}}(\xi,t)$, whose (i,j) element is $a_{ij} = \delta_{ij} + \int_0^t (\frac{\partial v_i}{\partial \xi_i})(\xi,s)ds$. There exists a small number σ such that if

$$\max_{i,j=1,\dots,N} \left\| \int_0^t \frac{\partial v_i}{\partial \xi_j}(\cdot,s) ds \right\|_{L_{\infty}(\Omega)} < \sigma \quad (0 < t < T), \tag{1.6}$$

then A is invertible, that is, $\det A \neq 0$. Thus, we have $\nabla_x = A^{-1}\nabla_\xi = (\mathbf{I} + \mathbf{V}_0(\int_0^t \nabla \mathbf{v}(\xi, s)ds))\nabla_\xi$, where $\mathbf{V}_0(\mathbf{K})$ is an $N \times N$ matrix of C^{∞} functions with respect to $\mathbf{K} = (k_{ij})$ for $|\mathbf{K}| < 2\sigma$ and $\mathbf{V}_0(0) = 0$. Here and hereafter, k_{ij} denote corresponding variables to $\int_0^t (\frac{\partial v_i}{\partial \xi_i})(\cdot, s)ds$. Let \mathbf{n} be the unit outward normal to

Download English Version:

https://daneshyari.com/en/article/839202

Download Persian Version:

https://daneshyari.com/article/839202

<u>Daneshyari.com</u>