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a b s t r a c t

The square root of the heat operator
√
∂t −∆, can be realized as the Dirichlet to

Neumann map of the heat extension of data on Rn+1 to Rn+2
+ . In this note we

obtain similar characterizations for general fractional powers of the heat operator,
(∂t−∆)s, s ∈ (0, 1). Using the characterizations we derive properties and boundary
estimates for parabolic integro-differential equations from purely local arguments in
the extension problem.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years there has been a surge in the study of the fractional Laplacian (−∆)s as well as more
general linear and non-linear fractional operators. From an applied perspective a natural parabolic extension
of (−∆)s is the parabolic operator ∂t + (−∆)s which appears, for example, in the study of stable processes
and in option pricing models, see [4] and the references therein. An other generalization is the time-fractional
diffusion equation ∂βt +(−∆)s being the sum of a fractional and non-local time-derivative as well as a non-local
operator in space as well. This type of equations has attracted considerable interest during the last years,
mostly due to their applications in the modeling of anomalous diffusion, see [1,18,19], and the references
therein. Decisive progress in the study of the fine properties of solutions to (−∆)su = 0 has been achieved
through an extension technique, rediscovered in [6], based on which the fractional Laplacian can be studied
through a local but degenerate elliptic operator having degeneracy determined by an A2-weight. The latter
operators have been thoroughly studied in [5,12,10,11,24], as well as in several other subsequent papers. Due
to the lack of an established extension technique for operators of the forms ∂t + (−∆)s, ∂βt + (−∆)s, more
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modest, but still important, progress has been made concerning these equations, again see [4,1,18,19], and
the references therein.

In this note we take a different approach by considering directly the fractional heat operator (∂t −∆)s.
Given s ∈ (0, 1) we introduce the fractional heat operator (∂t −∆)s defined on the Fourier transform side
by multiplication with the multiplier

(|ξ|2 − iτ)s.

Using [23] it follows that (∂t −∆)s can be realized as a parabolic hypersingular integral,

(∂t −∆)sf(x, t) = 1
Γ (−s)

 t
−∞


Rn

(f(x, t)− f(x′, y′))
(t− t′)1+s W (x− x′, t− t′) dx′dt′,

where W (x, t) = (4πt)−n/2 exp(−|x|2/(4t)) for t > 0 and where Γ (−s) is the gamma function evaluated
at −s. The main result established in this note is that, in analogy with [6], fine properties of solutions to
(∂t −∆)sf = 0 can be derived through an extension technique based on which the fractional heat operator
can be studied through a local but degenerate parabolic operator having degeneracy determined by an
A2-weight. To be precise, we consider a specific extension to the upper half space

Rn+2
+ = {(X, t) = (x, xn+1, t) ∈ Rn × R× R : xn+1 > 0},

having boundary

Rn+1 = {(x, xn+1, t) ∈ Rn × R× R : xn+1 = 0}.

In the following we let ∇ = (∇x, ∂xn+1) an we let div be the associated divergence operator. Let a = 1− 2s.
Letting

Γxn+1(x, t) := 1
4sΓ (−s)x

1−a
n+1

1
t1+sW (x, t) exp(−|xn+1|2/(4t)) (1.1)

whenever (x, xn+1, t) ∈ Rn+2
+ and t > 0, we introduce, given a and f ∈ C∞0 (Rn+1), the function

u(X, t) = u(x, xn+1, t) =
 t
−∞


Rn
f(x′, t′)Γxn+1(x− x′, t− t′) dx′dt′. (1.2)

Given (x, t) ∈ Rn+1 and r > 0, let B(x, r) denote the standard Euclidean ball and let Cr(x, t) denote the
standard parabolic cylinder

Cr(x, t) = B(x, r)× (t− r2, t+ r2).

Our first result is the following theorem.

Theorem 1. Consider s, 0 < s < 1, fixed and let a = 1 − 2s. Consider f ∈ C∞0 (Rn+1) and let u be defined
as in (1.2). Then u solves

xn+1
a∂tu(X, t)− div(xn+1

a∇u(X, t)) = 0, (X, t) ∈ Rn+2
+ ,

u(x, 0, t) = f(x, t), (x, t) ∈ Rn+1, (1.3)

and

xn+1
a∂xn+1u(X, t)


xn+1=0

= − lim
xn+1→0

4su(X, t)− u(x, 0, t)
xn+11−a = (∂t −∆)sf(x, t).

Furthermore, assume that (∂t − ∆)sf(x, t) = 0 whenever (x, t) ∈ Cr(x̃, t̃), for some (x̃, t̃) ∈ Rn+1, r > 0,
let ũ(x, xn+1, t) be defined to equal u(x, xn+1, t) whenever xn+1 ≥ 0 and defined to equal u(x,−xn+1, t)
whenever xn+1 < 0. Then ũ is a weak solution to the equation

|xn+1|a∂tũ(X, t)− div(|xn+1|a∇ũ(X, t)) = 0,

in {(X, t) = (x, xn+1, t) ∈ Rn+2 : (x, t) ∈ Cr(x̃, t̃), xn+1 ∈ (−1, 1)}.
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