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1. Introduction

In recent years there has been a surge in the study of the fractional Laplacian (—A)® as well as more
general linear and non-linear fractional operators. From an applied perspective a natural parabolic extension
of (—A)* is the parabolic operator 9; + (—A)*® which appears, for example, in the study of stable processes
and in option pricing models, see [4] and the references therein. An other generalization is the time-fractional
diffusion equation 8? +(—A)* being the sum of a fractional and non-local time-derivative as well as a non-local
operator in space as well. This type of equations has attracted considerable interest during the last years,
mostly due to their applications in the modeling of anomalous diffusion, see [1,18,19], and the references
therein. Decisive progress in the study of the fine properties of solutions to (—A)*u = 0 has been achieved
through an extension technique, rediscovered in [6], based on which the fractional Laplacian can be studied
through a local but degenerate elliptic operator having degeneracy determined by an As-weight. The latter
operators have been thoroughly studied in [5,12,10,11,24], as well as in several other subsequent papers. Due
to the lack of an established extension technique for operators of the forms 8, + (—A)*, 87 + (—A)*, more
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modest, but still important, progress has been made concerning these equations, again see [4,1,18,19], and
the references therein.

In this note we take a different approach by considering directly the fractional heat operator (9; — A)*.
Given s € (0,1) we introduce the fractional heat operator (0 — A)® defined on the Fourier transform side
by multiplication with the multiplier

(1€? —ir)®.
Using [23] it follows that (0 — )S can be realized as a parabolic hypersingular integral,
(O — A)° f(z, t ) fi y))W(x—x',t—t’) dx’dt’,

where W (x,t) = (4rt)~"/? exp(f\x| /(4t)) for ¢ > 0 and where I'(—s) is the gamma function evaluated
at —s. The main result established in this note is that, in analogy with [6], fine properties of solutions to
(0 — A)*f = 0 can be derived through an extension technique based on which the fractional heat operator
can be studied through a local but degenerate parabolic operator having degeneracy determined by an
As-weight. To be precise, we consider a specific extension to the upper half space

R = {(X,t) = (2,2n41,t) ER" x R xR : 2,11 > 0},
having boundary
R = {(z,2p41,t) ER" xR xR : 2,1 = 0}.
In the following we let V = (V,0,,,,) an we let div be the associated divergence operator. Let a = 1 — 2s.

Letting

1 o 1
Lo (2, 8) = 45T (—s) :L+1t1+sW(x’t) exp(—|xn+1|2/(4t)) (1.1)

whenever (z,,41,t) € R and ¢ > 0, we introduce, given a and f € C§°(R"*1), the function

w(X,t) = u(z, xpy1,1t) / f@' )y, (x—a' t —t')da'dt’. (1.2)
]Rn

Given (z,t) € R™™ and r > 0, let B(x,r) denote the standard Euclidean ball and let C,(z,t) denote the
standard parabolic cylinder
Cp(z,t) = B(z,r) x (t —r?,t +1?).

Our first result is the following theorem.

Theorem 1. Consider s, 0 < s < 1, fized and let a = 1 — 2s. Consider f € C§°(R™) and let u be defined
as in (1.2). Then u solves

Ty 1% Opu(X, t) — div(wny1"Vu(X, 1)) = 0, (X,t) € R2,

uw(z,0,t) = f(x,t), (x,t) € R (1.3)
and
X,t) — 0,t
tus e qu(X,t)| == tim KD UBOD g gy,
ZTn41=0 Tnt1—0 Tpy1- @

Furthermore, assume that (8; — A)* f(z,t) = 0 whenever (z,t) € C.(7,t), for some (%,t) € R"*1 r >0,
let a(x,xpy1,t) be defined to equal u(x,z,y1,t) whenever x,+1 > 0 and defined to equal u(x, —x,y1,t)
whenever T,+1 < 0. Then 4 is a weak solution to the equation

|Xnp1|0va( X, t) — div(|xn11|*Va(X,t)) =0,

in {(X,t) = (v, 2p41,t) € R"2: (2,t) € Cp(3,1), zpy1 € (=1,1)}.
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