Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Evolution of convex hypersurfaces by a fully nonlinear flow

Yan-nan Liu^{a,*}, Hong-jie Ju^b

^a Department of Mathematics, Beijing Technology and Business University, Beijing 100048, PR China ^b School of Science, Beijing University of Posts and Telecommunication, Beijing, 100876, PR China

ABSTRACT

ARTICLE INFO

Article history: Received 31 March 2015 Accepted 14 September 2015 Communicated by S. Carl

MSC: 35K45 53A05

Keywords: Parabolic equation Fully nonlinear curvature flow Forced term

1. Introduction

Let M_0 be a smooth, closed and strictly convex hypersurface in an Euclidean space \mathbb{R}^{n+1} . Suppose that M_0 is given by a smooth embedding $F_0: S^n \to \mathbb{R}^{n+1}$. In this paper, we study the flow

existence time of the flow is finite.

$$\frac{dF}{dt} = (k(x,t) - c)\nu \coloneqq f\nu, \qquad (1.1)$$

In this paper, we study the evolution of convex hypersurfaces by a fully nonlinear

function of curvature minus an external force field c. We prove that the flow will

preserve the convexity for any c. When c < q on the initial surface, where q is the

fully nonlinear function, we prove that the flow will expand the hypersurface for all time. If on initial surface M_0 the minimal principal radius of curvature r_{\min} satisfies

 $r_{\min} > nc$ and minimum of the support function s satisfies $s_{\min} > nc$, then after

a scaling the hypersurface will converge to a sphere. If c > q on the initial surface

 M_0 and the diameter of M_0 satisfies diam $(M_0) < \sqrt{2nc}$, we show that the maximal

where $k(\cdot, t)$ is a suitable curvature function of hypersurface M_t parametrized by $F(\cdot, t) : S^n \to \mathbb{R}^{n+1}$. ν is the outer unit normal vector, and c is a constant.

We assume that the curvature function $k(\cdot, t)$ can be expressed as

$$k(\cdot, t) = g(r_1, \dots, r_n) \tag{1.2}$$

where r_1, \ldots, r_n are the principal radii of curvature of the hypersurface M_t , and $g \in C^{\infty}(\Gamma^+)$ is a positive, symmetric function on the positive cone $\Gamma^+ = \{(r_1, \ldots, r_n) \in \mathbb{R}^n : r_i > 0 \text{ for all } i\}$. The function g is assumed to satisfy the following conditions:

© 2015 Elsevier Ltd. All rights reserved.

 $^{^{*}}$ Corresponding author. Tel.: +86 10 68985939; fax: +86 10 68985939.

E-mail address: liuyn@th.btbu.edu.cn (Y.-n. Liu).

- (A1) g is homogeneous of degree one on Γ^+ ,
- (A2) $\frac{\partial g}{\partial r_i} > 0$ on Γ^+ ,
- (A3) g is concave on Γ^+ .

We also assume that $g(1, \ldots, 1) = \frac{1}{n}$. The reason we choose $\frac{1}{n}$ as the normalized constant is if g is the inverse mean curvature function, then $g(1, \ldots, 1) = \frac{1}{n}$. If we let $g(1, \ldots, 1) = \beta$ for some positive constant β , the main conclusions of this paper still hold.

For c = 0, flow (1.1) has been studied in [3,15,16]. In [16], Urbas proved that the surfaces stay strictly convex and smooth for all time under the flow. Furthermore, the surfaces become more and more spherical in the process. In [3,15], the authors got the similar results for the star-shaped initial hypersurface. If g is the inverse mean curvature function, flow (1.1) is called inverse mean curvature flow with forced term, which has been studied in [11]. In [11], the author proved that the convexity of the flow (1.1) is preserved and the hypersurface contracts if c > g and expands if c < g. For the study of inverse mean curvature flow, one can refer to [5,6].

The curvature flows with forced term have been studied extensively. For mean curvature flow with external force field, which is a model describing the Ginzburg–Landau vortex, one can refer to [7,9,10,12-14]. There are also some other evolution equations for geometric quantities for general speeds, see e.g. [2,4].

In this paper, we will study the properties of the hypersurfaces under flow (1.1), we also want to find out how the force term c affects the flow. First, we prove that when c > g on M_0 and the diameter M_0 satisfying diam $(M_0) < \sqrt{2nc}$, flow (1.1) will exist in finite time.

Theorem 1.1. Let M_0 be a smooth, closed and strictly convex hypersurface in \mathbb{R}^{n+1} , n > 2, given by a smooth embedding $F_0 : S^n \to \mathbb{R}^{n+1}$. Let $g \in C^{\infty}(\Gamma^+)$ be a positive, symmetric function on the positive cone satisfying (A1)–(A3). If c > g on M_0 and the diameter of M_0 satisfies diam $(M_0) < \sqrt{2}$ nc, then the flow (1.1) will exist in finite time.

When c < g on M_0 and g satisfies an extra condition, we will prove flow (1.1) will expand for all time. Let r_{\min} denote the minimal principal curvature radius of the convex hypersurface, and s_{\min} denote the minimum of support function, then if $r_{\min} > nc$ and $s_{\min} > nc$ on M_0 , we obtain that the surface will converge to sphere after a scaling.

Theorem 1.2. Let M_0 be a smooth, closed and strictly convex hypersurface in \mathbb{R}^{n+1} , n > 2 given by a smooth embedding $F_0 : S^n \to \mathbb{R}^{n+1}$. Let $g \in C^{\infty}(\Gamma^+)$ be a positive, symmetric function on the positive cone satisfying (A1)–(A3). If c < g on M_0 , and one of the following conditions is satisfied

(B1) $g \in C^0(\overline{\Gamma^+})$ and $g \equiv 0$ on $\partial \Gamma^+$; (B2) the function g defined by

$$g(r_1,\ldots,r_n) = \frac{1}{w\left(\frac{1}{r_1},\ldots,\frac{1}{r_n}\right)}$$

is concave on Γ^+ .

Then the flow (1.1) will expand the convex hypersurface for all time. And if $r_{\min} > nc$ and $s_{\min} > nc$ on M_0 , and let $\widetilde{M}_t = e^{-\frac{1}{n}t}M_t$, then \widetilde{M}_t will converge in C^{∞} topology to a sphere.

When $g = \frac{1}{H}$, where *H* is the mean curvature function, the same conclusions as Theorems 1.1 and 1.2 have been proved by the author in [11]. We want to point out here that in that paper, when proving the convergence of the scaling surfaces, we missed the condition $r_{\min} > nc$ and $s_{\min} > nc$ on M_0 .

Download English Version:

https://daneshyari.com/en/article/839236

Download Persian Version:

https://daneshyari.com/article/839236

Daneshyari.com