Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Antimaximum principle in exterior domains

T.V. Anoop^a, P. Drábek^{b,*}, Lakshmi Sankar^c, Sarath Sasi^c

^a Department of Mathematics, Indian Institute of Technology Madras, Chennai 36, India ^b Department of Mathematics and NTIS, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 22, 306 14 Plzeň, Czech Republic

^c School of Mathematical Sciences, National Institute of Science Education and Research, Jatni, Odisha, PIN 752050, India

ARTICLE INFO

Article history: Received 19 June 2015 Accepted 8 October 2015 Communicated by Enzo Mitidieri

MSC: 35J92 35P30 35B05

Keywords: Exterior domains *p*-Laplacian Local and global antimaximum principle Positive eigenfunctions Regularity results

ABSTRACT

We consider the antimaximum principle for the *p*-Laplacian in the exterior domain:

$$\begin{cases} -\Delta_p u = \lambda K(x) \mid u \mid^{p-2} u + h(x) & \text{in } B_1^c, \\ u = 0 & \text{on } \partial B_1, \end{cases}$$

where Δ_p is the *p*-Laplace operator with $p > 1, \lambda$ is the spectral parameter and B_1^c is the exterior of the closed unit ball in \mathbb{R}^N with $N \ge 1$. The function *h* is assumed to be nonnegative and nonzero, however the weight function *K* is allowed to change its sign. For *K* in a certain weighted Lebesgue space, we prove that the antimaximum principle holds locally. A global antimaximum principle is obtained for *h* with compact support. For a compactly supported *K*, with N = 1 and p = 2, we provide a necessary and sufficient condition on *h* for the global antimaximum principle. In the course of proving our results we also establish the boundary regularity of solutions of certain boundary value problems.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are concerned with the antimaximum principle for the following quasilinear problem:

$$-\Delta_p u = \lambda K(x) |u|^{p-2} u + h(x) \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega,$$
 (1)

where Δ_p is the *p*-Laplace operator with p > 1, λ is the spectral parameter and Ω is a domain in \mathbb{R}^N with $N \ge 1$. In particular, we will be considering $\Omega = B_1^c$, the exterior of the closed unit ball centered at the

^{*} Corresponding author. Tel.: +420 377632648.

E-mail addresses: anoop@iitm.ac.in (T.V. Anoop), pdrabek@kma.zcu.cz (P. Drábek), lakshmi@niser.ac.in (L. Sankar), sarath@niser.ac.in (S. Sasi).

origin. The weight function K is allowed to change sign and $h \in L^{\infty}_{loc}(\Omega)$ is a nonnegative nonzero source term that lies in a suitable function space. Further assumptions on the functions K and h will be specified later. Through out this article, the solutions are understood in a weak sense (see Definition 1.2).

Let Ω be a bounded domain in \mathbb{R}^N . Let λ_1 and λ_2 be the first and second eigenvalues of the Laplacian on Ω with the Dirichlet boundary condition. For $h \in L^2(\Omega)$ and for $\lambda \in (-\infty, \lambda_2) \setminus \{\lambda_1\}$, the Fredholm alternative for self adjoint compact operators ensures the existence of solutions for the following problem:

$$-\Delta u = \lambda u + h(x) \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega.$$
 (2)

For $\lambda < \lambda_1$ and $h \ge 0 (\not\equiv 0)$, it can be easily verified that the solutions of (2) are nonnegative. Furthermore, the strong maximum principle implies that any nonnegative solution of (2) is strictly positive in Ω . On the other hand, for certain $\lambda > \lambda_1$, Clement and Peletier (in [4]) observed that a complete opposite of the above phenomena happens, i.e., there exists $\delta(h) > 0$ such that for $\lambda \in (\lambda_1, \lambda_1 + \delta)$ any solution of (2) is completely negative in Ω . They named this phenomena as the antimaximum principle (in short AMP). Thereafter many versions and generalizations of the AMP were proved for both Laplacian and *p*-Laplacian on bounded domains. For example, see [3,8,9,13] and the references therein.

On an unbounded domain Ω and for *p*-Laplacian with $p \neq 2$, the right analogue of (2) is given by (1). Furthermore, in this case, the eigenvalue λ_1 is given by the following weighted eigenvalue problem associated to (1):

$$\begin{cases} -\Delta_p u = \lambda K(x) |u|^{p-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$
(3)

The AMP for (1) was studied in [6,14] for the weight function K that belongs to certain classes of Lebesgue spaces. Unlike in the case of bounded domains, the AMP does not hold for (1) on unbounded domains in general. However, in [6,14] it is shown that a local version of AMP holds for (1).

Definition 1.1. For a given $h \ge 0, h \ne 0$, we say that a *local* AMP holds for (1), if for any bounded set $E \subset \Omega$ there exists $\delta = \delta(h, E)$ such that any solution u_{λ} of (1) is negative in E for every $\lambda \in (\lambda_1, \lambda_1 + \delta)$. If there exists a $\delta = \delta(h)$ such that u_{λ} is negative in Ω for every $\lambda \in (\lambda_1, \lambda_1 + \delta)$ then we say that global AMP holds for (1).

In [14], the authors consider $\Omega = \mathbb{R}^N$ with 1 and K satisfying the following conditions

- (i) $K \in L^{\infty}(\mathbb{R}^N) \cap \mathcal{C}^{\alpha}(\mathbb{R}^N)$ for some $\alpha \in (0,1)$ and $\operatorname{supp}(K^+)$ is of positive measure,
- (ii) $K = g_1 + g_2 g_3 g_4$ such that $g_i \ge 0, g_1 \in L^{\frac{N}{p}}(\mathbb{R}^N)$ and $g_i \in L^{\infty}(\mathbb{R}^N)$ for i = 1, 2, 3, 4.

Under some additional conditions on g_2, g_3 and g_4 (see H_1 and H_2 of [14]), the existence of the first eigenvalue λ_1 for (3) is proved in [14]. Furthermore, for a given $h \in L^{\infty}(\mathbb{R}^N)$ such that $h \ge 0, h \ne 0$ they prove a local AMP.

The local AMP for (1) with $\Omega = \mathbb{R}^N$ has been extended for $p \ge N$ in [6] with the restriction that the weight function K has dominant negative part at infinity. More precisely, the authors considered K of the form $K = g_1 - g_2$ with $g_1, g_2 \in L^{\infty}_{\text{loc}}(\mathbb{R}^N)$ and satisfies the following conditions:

(i) for p < N, $g_1 \in L^{\frac{N}{p}}(\mathbb{R}^N)$ and $g_1, g_2 \ge 0$,

(ii) for $p \ge N$, there exist an integer $N_0 > p$ and $\varepsilon_0 > 0$ such that $g_1 \in L^{\frac{N_0}{p}}(\mathbb{R}^N)$, $g_1 \ge 0$ and $g_2 \ge \varepsilon_0$, (iii) $\operatorname{supp}(K^+)$ has a positive measure. Download English Version:

https://daneshyari.com/en/article/839248

Download Persian Version:

https://daneshyari.com/article/839248

Daneshyari.com