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is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.
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a b s t r a c t

We consider the antimaximum principle for the p-Laplacian in the exterior domain:
−∆pu= λK(x) | u |p−2

u+ h(x) in Bc1,
u= 0 on ∂B1,

where ∆p is the p-Laplace operator with p > 1, λ is the spectral parameter and Bc1 is
the exterior of the closed unit ball in RN with N ≥ 1. The function h is assumed to
be nonnegative and nonzero, however the weight function K is allowed to change its
sign. For K in a certain weighted Lebesgue space, we prove that the antimaximum
principle holds locally. A global antimaximum principle is obtained for h with
compact support. For a compactly supportedK, with N = 1 and p = 2, we provide a
necessary and sufficient condition on h for the global antimaximum principle. In the
course of proving our results we also establish the boundary regularity of solutions
of certain boundary value problems.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are concerned with the antimaximum principle for the following quasilinear problem:

−∆pu = λK(x)|u|p−2u+ h(x) in Ω ,

u = 0 on ∂Ω ,
(1)

where ∆p is the p-Laplace operator with p > 1, λ is the spectral parameter and Ω is a domain in RN with
N ≥ 1. In particular, we will be considering Ω = Bc1, the exterior of the closed unit ball centered at the
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origin. The weight function K is allowed to change sign and h ∈ L∞loc(Ω) is a nonnegative nonzero source
term that lies in a suitable function space. Further assumptions on the functions K and h will be specified
later. Through out this article, the solutions are understood in a weak sense (see Definition 1.2).

Let Ω be a bounded domain in RN . Let λ1 and λ2 be the first and second eigenvalues of the Laplacian
on Ω with the Dirichlet boundary condition. For h ∈ L2(Ω) and for λ ∈ (−∞, λ2) \ {λ1}, the Fredholm
alternative for self adjoint compact operators ensures the existence of solutions for the following problem:

−∆u = λu+ h(x) in Ω ,

u = 0 on ∂Ω .
(2)

For λ < λ1 and h ≥ 0( ̸≡0), it can be easily verified that the solutions of (2) are nonnegative. Furthermore,
the strong maximum principle implies that any nonnegative solution of (2) is strictly positive in Ω . On
the other hand, for certain λ > λ1, Clement and Peletier (in [4]) observed that a complete opposite of the
above phenomena happens, i.e., there exists δ(h) > 0 such that for λ ∈ (λ1, λ1 + δ) any solution of (2)
is completely negative in Ω . They named this phenomena as the antimaximum principle (in short AMP).
Thereafter many versions and generalizations of the AMP were proved for both Laplacian and p-Laplacian
on bounded domains. For example, see [3,8,9,13] and the references therein.

On an unbounded domain Ω and for p-Laplacian with p ̸= 2, the right analogue of (2) is given by (1).
Furthermore, in this case, the eigenvalue λ1 is given by the following weighted eigenvalue problem associated
to (1): 

−∆pu = λK(x)|u|p−2u in Ω ,
u = 0 on ∂Ω .

(3)

The AMP for (1) was studied in [6,14] for the weight function K that belongs to certain classes of Lebesgue
spaces. Unlike in the case of bounded domains, the AMP does not hold for (1) on unbounded domains in
general. However, in [6,14] it is shown that a local version of AMP holds for (1).

Definition 1.1. For a given h ≥ 0, h ̸≡ 0, we say that a local AMP holds for (1), if for any bounded set E ⊂ Ω
there exists δ = δ(h,E) such that any solution uλ of (1) is negative in E for every λ ∈ (λ1, λ1 + δ). If there
exists a δ = δ(h) such that uλ is negative in Ω for every λ ∈ (λ1, λ1 + δ) then we say that global AMP holds
for (1).

In [14], the authors consider Ω = RN with 1 < p < N and K satisfying the following conditions

(i) K ∈ L∞(RN ) ∩ Cα(RN ) for some α ∈ (0, 1) and supp(K+) is of positive measure,
(ii) K = g1 + g2 − g3 − g4 such that gi ≥ 0, g1 ∈ L

N
p (RN ) and gi ∈ L∞(RN ) for i = 1, 2, 3, 4.

Under some additional conditions on g2, g3 and g4 (seeH1 andH2 of [14]), the existence of the first eigenvalue
λ1 for (3) is proved in [14]. Furthermore, for a given h ∈ L∞(RN ) such that h ≥ 0, h ̸≡ 0 they prove a local
AMP.

The local AMP for (1) with Ω = RN has been extended for p ≥ N in [6] with the restriction that the
weight function K has dominant negative part at infinity. More precisely, the authors considered K of the
form K = g1 − g2 with g1, g2 ∈ L∞loc(RN ) and satisfies the following conditions:

(i) for p < N , g1 ∈ L
N
p (RN ) and g1, g2 ≥ 0,

(ii) for p ≥ N , there exist an integer N0 > p and ε0 > 0 such that g1 ∈ L
N0
p (RN ), g1 ≥ 0 and g2 ≥ ε0,

(iii) supp(K+) has a positive measure.
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