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In this paper, we provide two-sided estimates for the source solution of d-dimensional
critical fractal Burgers equation ut−∆α/2+b·∇(u|u|q) = 0, q = (α−1)/d, α ∈ (1, 2),
b ∈ Rd, by the density function of the isotropic α-stable process.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Let d ∈ N and α ∈ (1, 2). We consider the following pseudo-differential equation
ut −∆α/2u+ b · ∇ (u|u|q) = 0, t > 0, x ∈ Rd,
u(0, x) =Mδ0(x),

(1.1)

where M > 0 is arbitrary constant and b ∈ Rd is a constant vector. In this paper, we focus on the critical
case q = (α− 1)/d. Here, ∆α/2 denotes the fractional Laplacian defined by the Fourier transform

∆α/2φ(ξ) = −|ξ|αφ(ξ), φ ∈ C∞c (Rd).

Eq. (1.1) for various values of q and initial conditions u0 was recently intensely studied [2,4,3,7]. For d = 1,
the case q = 2 is of particular interest (see e.g. [14,1,15,19]) because it is a natural counterpart of the classical
Burgers equation. Another interesting value of q is α−1

d . In [4] authors proved that the solution of (1.1),
which we denote throughout the paper by uM (t, x), exists and is unique and positive. It belongs also to
Lp

Rd


for every p ∈ [1,∞]. The exponent q = α−1
d is critical in some sense. It is the only value for which

the function uM (t, x) is self-similar. It satisfies the following scaling condition [4]

uM (t, x) = aduM (aαt, ax), for all a > 0. (1.2)
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Furthermore, the linear and nonlinear terms in (1.1) have equivalent influence on the asymptotic behavior
of the solution. If q > (α − 1)/d, the operator ∆α/2 plays the main role. More precisely, for such q and a
function u satisfying (1.1), with not necessarily the same initial condition, we have

lim
t→∞
tn(1−1/p)/α

u(t, ·)− e∆α/2u(0, ·)
p

= 0, for each p ∈ [1,∞].

For q < (α−1)/d another asymptotic behavior is expected. In addition, taking q = α−1
d for d = 1 and α = 2

we obtain the classical case, which makes Eq. (1.1) with critical exponent q one of the natural generalizations
of the Burgers equation.

Till the end of the paper we assume that d ≥ 1, α ∈ (1, 2) and q = α−1
d . Let p(t, x) be the fundamental

solution of

vt = ∆α/2v. (1.3)

In [7] the authors proved that for sufficiently small M there is a constant C = C(d, α,M, b) such that

uM (t, x) ≤ Cp(t, x), t > 0, x ∈ Rd. (1.4)

In this paper we get rid of the smallness assumption of M . Furthermore, we also obtain the lower bounds
of uM . We propose a new method which allows us to show pointwise estimates of solutions to the nonlinear
problem (1.1) without the smallness assumption imposed onM . This method has been inspired by the proof
of [6, Theorem 1]. Our main result is

Theorem 1.1. Let d ≥ 1 and α ∈ (1, 2). Let uM (t, x) be the solution of Eq. (1.1) with q = α−1
d . There exists

a constant C = C(d, α,M, b) such that

C−1p(t, x) ≤ uM (t, x) ≤ Cp(t, x), t > 0, x ∈ Rd.

In addition, applying Theorem 1.1, we get the following estimates

|uM (1, x)−Mp(1, x)| ≤ c p(1, x)1 + |x| ,

|∇uM (t, x)| ≤ c p(1, x)
t−1/α + |x|

.

The fractional Laplacian plays also a very important role in the probability theory as a generator of the
so called isotropic stable process. The theory of its linear perturbations has been recently significantly
developed, see e.g., [5,6,12,13,18,16,17,8,10]. However, since the term b · ∇(|u|qu) in (1.1) represents a
nonlinear drift, methods used in the linear case often cannot be adapted. In the proofs we mostly
use the Duhamel formula and its suitable iteration. The scaling condition (1.2) is also intensively
exploit.

The paper is organized as follows. In Preliminaries we collect some properties of the function p(t, x) and
introduce the Duhamel formula as well. In Section 3 we prove Theorem 1.1. In Section 4 we apply the
methods and the results of Section 3 to obtain estimates of |uM (1, x)−Mp(1, x)| and |∇uM (1, x)|.

2. Preliminaries

2.1. Notation

For two positive functions f, g we denote f . g whenever there exists a constant c > 1 such that
f(x) < cg(x) for every argument x. If f . g and g . f we write f ≈ g. If value of a constant in estimates is
relevant, we denote it by Ck, k ∈ N, and it does not change throughout the paper.
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