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a b s t r a c t

This mostly expository paper shows how weak convergence methods provide simple,
elegant proofs of (i) the stabilization of an inverted pendulum under fast vertical
oscillations, (ii) the existence of particle traps induced by rapidly varying electric
fields and (iii) the adiabatic invariance of


Γ
p dx for slowing varying planar

Hamiltonian dynamics. Under an appropriate, but very restrictive, unique ergodicity
assumption, the proof of (iii) extends also to many degrees of freedom.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The rigorous mathematical analysis of nonlinear differential equations depends primarily upon deriving
estimates, but typically also upon using these estimates to justify limiting procedures of various sorts. For
the latter, so-called weak convergence methods can be extremely valuable, as illustrated by many examples
in the booklet [7].

This paper provides some more examples, concerning averaging effects for singularly perturbed nonlinear
ODE. Section 2 shows how some simple “nonlinear resonance” effects (occurring when the weak limit of the
product of two sequences of functions is not the product of the individual weak limits) appear for Kapitsa’s
inverted pendulum and its generalizations. Section 3 invokes the more sophisticated tools of Young measures
to document the adiabatic invariance of the volume within constant energy surfaces for slowly changing
Hamiltonian systems, provided an appropriate ergodic type condition holds. Our proofs are perhaps new,
at least in the elegant versions we provide, and our presentation is largely expository.

We wish also to call attention to Bornemann’s book [3], a very interesting discussion of weak convergence
methods applied to singularly perturbed mechanical and quantum systems. His primary interest is explaining
how increasingly singular potentials enforce holonomic constraints in the limit.
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The results in Section 2 appear in somewhat different form in the second author’s 2014 PhD thesis from
UC Berkeley. We thank M. Zworski for explaining to us about ergodicity for Hamiltonian systems.

2. Averaging and stability

2.1. The inverted pendulum

The equation of motion for an inverted pendulum over a vertically oscillating pivot is

θ′′ϵ −

a+ b

ϵ
cos t

ϵ


sin θϵ = 0, (2.1)

where θϵ = θϵ(t) denotes the angle from the vertical and a := g
l > 0, l denoting the length. This is Kapitsa’s

pendulum: see for example Landau–Lifshitz [8, Section 30], Arnold [1, Section 25.E] and Levi [9].
We provide a simple proof that solutions of (2.1) converge as ϵ→ 0 to solutions of θ′′+ b

2

4 sin 2θ−a sin θ = 0.
This ODE has the form θtt +F ′(θ) = 0, for which the solution θ ≡ 0 is stable provided F ′′(0) = b2

2 − a > 0;
that is, if and only if |b| ≥

√
2a. This is the well-known stability condition for the inverted pendulum in the

high frequency limit.
We turn now to a rigorous proof. Consider the following initial-value problem:

θ′′ϵ =

a+ b

ϵ
cos t

ϵ


sin θϵ (t ≥ 0)

θϵ(0) = α

θ′ϵ(0) = β.

(2.2)

Theorem 2.1. As ϵ→ 0, θϵ converges uniformly on each finite time interval [0, T ] to the solution θ of
θ′′ = a sin θ − b2

4 sin 2θ
θ(0) = α

θ′(0) = β.

(2.3)

The main idea will be to rewrite the ODE (2.2) into the form
θ′ϵ − b sin t

ϵ
sin θϵ
′

= a sin θϵ − b sin t
ϵ

cos θϵθ′ϵ. (2.4)

Proof. 1. First we show that for each T > 0, we have the estimate

max
0≤t≤T

|θϵ|, |θ′ϵ| ≤ CT , (2.5)

for a constant CT > 0 that only depends on T , α and β. To confirm this, integrate (2.4), to find

|θ′ϵ(t)| ≤ C1 + C2

 t
0
|θ′ϵ| ds

for 0 ≤ t ≤ T and constants C1, C2 ≥ 0. According then to Gronwall’s inequality, we have the estimate

|θ′ϵ(t)| ≤ C1

1 + C2te

C1t

≤ CT

for each 0 ≤ t ≤ T and a constant CT > 0 that only depends on T .
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