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a b s t r a c t

We present new analytical and numerical results for the elliptic–parabolic system of
partial differential equations proposed by Hu and Cai, which models the formation of
biological transport networks. The model describes the pressure field using a Darcy’s
type equation and the dynamics of the conductance network under pressure force
effects. Randomness in the material structure is represented by a linear diffusion
term and conductance relaxation by an algebraic decay term. The analytical part
extends the results of Haskovec et al. (2015) regarding the existence of weak and
mild solutions to the whole range of meaningful relaxation exponents. Moreover,
we prove finite time extinction or break-down of solutions in the spatially one-
dimensional setting for certain ranges of the relaxation exponent. We also construct
stationary solutions for the case of vanishing diffusion and critical value of the
relaxation exponent, using a variational formulation and a penalty method.

The analytical part is complemented by extensive numerical simulations. We
propose a discretization based on mixed finite elements and study the qualitative
properties of network structures for various parameter values. Furthermore, we
indicate numerically that some analytical results proved for the spatially one-
dimensional setting are likely to be valid also in several space dimensions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In [9] we presented a mathematical analysis of the PDE system modeling formation of biological
transportation networks

−∇ · [(rI +m⊗m)∇p] = S, (1.1)
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∂m

∂t
−D2∆m− c2(m · ∇p)∇p+ α|m|2(γ−1)m = 0, (1.2)

for the scalar pressure p = p(t, x) ∈ R of the fluid transported within the network and vector-valued
conductance m = m(t, x) ∈ Rd with d ≤ 3 the space dimension. The parameters are D ≥ 0 (diffusivity),
c > 0 (activation parameter), α > 0 and γ ∈ R; in particular, we restricted ourselves to γ ≥ 1 in [9]. The
scalar function r = r(x) ≥ r0 > 0 describes the isotropic background permeability of the medium. The
term S = S(x) models time-independent sources and sinks. The system was originally derived in [10,11]
as the formal gradient flow of the continuous version of a cost functional describing formation of biological
transportation networks on discrete graphs. In this context, (1.1) can be interpreted as Kirchhoff’s law for
the flux u := −(rI+m⊗m)∇p, and the cost is proportional to |u·∇p|+const|m|2γ . Therefore, the parameter
γ ∈ R is crucial for the type of networks formed. For instance, modeling blood flow by Hagen–Poiseuille’s
law, |m| is proportional to the square of the luminal diameter of the blood vessel. Furthermore, the metabolic
cost for a blood vessel, which is described by |m|2γ in our notation, is proportional to the cross-sectional
area of the blood vessel [14]. Therefore, for blood vessel systems, γ = 1/2. For leaf venation the situation
is different since transportation of water causes no costs as it is driven by transpiration, which is due to
external solar power [18]. However, the vessel structure influences photosynthesis, and, therefore, veins will
build in such a way that the surface area between xylem water and surrounding mesophyll is maximized [20],
which leads again to γ = 1/2. Since the mechanical stability of a leaf may depend on the structure of the
vessels [18], also larger values of γ > 1/2 are likely. As argued in [11], if the metabolic costs are proportional
to the number of conduits in a tube, then γ = 1. For further details on the modeling we refer to [1]. Related
approaches may be found for instance in [5,7,12,23].

We pose (1.1), (1.2) on a bounded domain Ω ⊂ Rd with smooth boundary ∂Ω , and, for simplicity,
prescribe the homogeneous Dirichlet boundary conditions on ∂Ω for m and p:

m(t, x) = 0, p(t, x) = 0 for x ∈ ∂Ω , t ≥ 0. (1.3)

We note that the analytical results presented below can be easily extended to the case of homogeneous
Neumann boundary conditions. Moreover, we prescribe the initial condition for m:

m(t = 0, x) = m0(x) for x ∈ Ω . (1.4)

The main mathematical interest of the PDE system for network formation stems from the highly unusual
nonlocal coupling of the elliptic equation (1.1) for the pressure p to the reaction–diffusion equation (1.2) for
the conductance vector m via the pumping term +c2(∇p⊗∇p)m and the latter term’s potential equilibration
with the decay term −|m|2(γ−1)m. A major observation concerning system (1.1)–(1.2) is that it represents
the formal L2(Ω)-gradient flow associated with the highly non-convex energy-type functional

E(m) := 1
2


Ω


D2|∇m|2 + α

γ
|m|2γ + c2|m · ∇p[m]|2 + c2r(x)|∇p[m]|2


dx, (1.5)

where p = p[m] ∈ H1
0 (Ω) is the unique solution of the Poisson equation (1.1) with given m, subject to the

homogeneous Dirichlet boundary condition on ∂Ω . Note that (1.5) consists of, respectively, the diffusive
energy term, metabolic (relaxation) energy, and the last two terms account for network-fluid interaction
energy. We have:

Lemma 1 (Lemma 1 in [9]). Let E(m0) < ∞. Then the energy E(m(t)) is nonincreasing along smooth
solutions of (1.1)–(1.2) and satisfies

d
dtE(m(t)) = −


Ω


∂m

∂t
(t, x)

2
dx.
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