Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Boundary behaviour for a singular perturbation problem

A.L. Karakhanyan^a, H. Shahgholian^{b,*}

 ^a School of Mathematics, University of Edinburgh, Mayfield Road, EH9 3JZ, Edinburgh, Scotland, United Kingdom
 ^b Department of Mathematics, Royal Institute of Technology, 100 44 Stockholm, Sweden

ABSTRACT

ARTICLE INFO

Article history: Received 3 August 2015 Accepted 23 December 2015 Communicated by Enzo Mitidieri

To Juan-Luis Vazquez on the occasion of his 70th Birthdate

MSC: primary 35R35

Keywords: Free boundary problem Regularity Contact points

1. Introduction

In this paper we study the boundary behaviour of the family of solutions $\{u^{\varepsilon}\}$ to singular perturbation problem

$$\begin{cases} \Delta u^{\varepsilon} = \beta_{\varepsilon}(u^{\varepsilon}), & \text{in } B_1^+, \\ u^{\varepsilon} = f, & \text{on } B_1', \\ |u^{\varepsilon}| \le 1, & \text{in } B_1^+, \end{cases}$$
(1.1)

in the half unit ball $B_1^+ = \{x_n > 0\} \cap \{|x| < 1\}$, where $x = (x_1, \ldots, x_n) \in \mathbb{R}^n_+$, and $B_1' = B_1 \cap \{x_n = 0\}$. The perturbed right hand side β_{ε} , satisfies certain conditions that are specified below. Also, the boundary data f is a smooth function satisfying the following condition (specially on the flat portion of the boundary)

$$\nabla f(z) = 0$$
 whenever $f(z) = 0.$ (1.2)

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.na.2015.12.024} 0362\text{-}546 X/ @ 2016 Elsevier Ltd. All rights reserved.$

© 2016 Elsevier Ltd. All rights reserved.

E-mail addresses: aram6k@gmail.com (A.L. Karakhanyan), henriksh@math.kth.se (H. Shahgholian).

In this paper we study the boundary behaviour of the family of solutions $\{u^{\varepsilon}\}$ to singular perturbation problem $\Delta u^{\varepsilon} = \beta_{\varepsilon}(u^{\varepsilon}), | u^{\varepsilon} | \leq 1$ in $B_1^+ = \{x_n > 0\} \cap \{|x| < 1\}$, where a smooth boundary data f is prescribed on the flat portion of ∂B_1^+ . Here $\beta_{\varepsilon}(\cdot) = \frac{1}{\varepsilon}\beta\left(\frac{\cdot}{\varepsilon}\right), \beta \in C_0^{\infty}(0,1), \beta \geq 0, \int_0^1 \beta(t) = M > 0$ is an approximation of identity. If $\nabla f(z) = 0$ whenever f(z) = 0 then the level sets $\partial \{u^{\varepsilon} > 0\}$ approach the fixed boundary in tangential fashion with uniform speed. The methods we employ here use delicate analysis of local solutions, along with elaborated version of the so-called monotonicity formulas and classification of global profiles.

Our analysis is based on utilization of the monotonicity formula and classification of global/blow-up solutions. The analogous problem for minimizers of the functional

$$J(u) = \int_{B_1^+} |\nabla u|^2 + \lambda_+ \chi_{\{u > 0\}} + \lambda_- \chi_{\{u \le 0\}}$$

is studied in [8], where $\lambda_{+}^{2} - \lambda_{-}^{2} > 0$.

Problem (1.1) appears in the mathematical theory of combustion as a model with high activation energy, which is of order $\frac{1}{\varepsilon}$, in an ε -strip approximation of the flame, see [10, Chapter 4.3]. The family $\{\beta_{\varepsilon}(\cdot)\}$ renders such approximation (see (1.3)). Also, for more recent mathematical treatment see [2,4,5] and references therein.

Problem set-up and Standing Assumption:

To fix the ideas we suppose that

$$\beta_{\varepsilon}(\cdot) = \frac{1}{\varepsilon} \beta\left(\frac{\cdot}{\varepsilon}\right), \quad \beta \in C_0^{\infty}(0,1), \ \beta \ge 0, \qquad \int_0^1 \beta(t) dt = M > 0.$$
(1.3)

Observe that by definition of $\beta_{\varepsilon}(t)$ we have

$$\int_{0}^{\varepsilon} \beta_{\varepsilon}(t) dt = \int_{0}^{1} \beta(t) dt = M > 0$$

The limit function, obtained as $\varepsilon \to 0$ solves locally the following free boundary problem

$$\begin{cases} \Delta u = 0 & \text{in } \{u > 0\} \cup \{u < 0\}, \\ (u_{\nu}^{+})^{2} - (u_{\nu}^{-})^{2} = 2M & \text{on } \partial\{u > 0\}. \end{cases}$$
(1.4)

in a very weak sense, see [2,4,5].

Let f be a smooth function on $\{x_n = 0\} \cap B_1$ such that (1.2) is satisfied. It is known that under (1.2) the family $\{u^{\varepsilon}\}$ is uniformly bounded in Lipschitz norm [7]

$$\sup_{x \in B_{1/2}^+} |\nabla u^{\varepsilon}(x)| \le L, \tag{1.5}$$

with a positive constant L > 0, which is independent of ε for any solution of (1.1).

Assumptions (1.3) are standard (see [2,7]), however one can relax the assumption $\beta \in C_0^{\infty}(0,1)$ to $\beta \in C_0^{0,1}(0,1)$ in the proof of the Lipschitz norm estimate (1.5).

Non-degeneracy: Throughout the paper we shall assume a linear non-degeneracy at the origin, standard for such problems, which is

$$\int_{B_r^+} u \ge C_0 r^{n+1},\tag{1.6}$$

for a universal C_0 .

Remark 1.1. If large enough negative and positive phases are present then one can prove that u^+ is nondegenerate. Namely, let $x_0 \in \partial \{u > 0\}$, if there is a unit vector e, such that

$$\liminf_{r \to 0} \frac{|\{u > 0\} \cap \{(x - x_0) \cdot e > 0\} \cap B_r(x_0)|}{|B_r|} = \alpha_1$$

$$\liminf_{r \to 0} \frac{|\{u < 0\} \cap \{(x - x_0) \cdot e < 0\} \cap B_r(x_0)|}{|B_r|} = \alpha_2$$
(1.7)

with $\alpha_1 + \alpha_2 > \frac{1}{2}$ then there exists a tame constant C > 0 such that $\sup_{B_r(x_0)} u^{\varepsilon} \ge Cr$ [5, Theorem 6.3].

Download English Version:

https://daneshyari.com/en/article/839267

Download Persian Version:

https://daneshyari.com/article/839267

Daneshyari.com