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a b s t r a c t

We study the boundary differentiability of infinity harmonic functions with given
differentiable boundary data on convex domains. At a flat point (the boundary point
where the blow-up of the domain is the half-space), the infinity harmonic function
u is differentiable due to a previous result of the first author in Hong (2013). At
a corner point (the boundary point where the blow-up of the domain is not the
half-space), an example shows that u is not necessarily differentiable. In this paper,
we establish a slope estimate for u at corner points and provide a necessary and
sufficient condition for the differentiability of u at corner points.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω ⊂ Rn be a connected open set, an infinity harmonic function u ∈ C(Ω) is a viscosity solution of
the infinity Laplace equation

△∞ u(x) :=


1≤i,j≤n
uxiuxjuxixj = 0, x ∈ Ω .

The above equation was introduced by G. Aronsson in the 1960s [2,3] as the Euler–Lagrange equation of
the sup-norm variational problem of |▽u| or the equivalent optimal Lipschitz extension problem.

Bhattacharya et al. [5] proved the existence of infinity harmonic functions with a given boundary datum
and Jensen [12] proved the uniqueness (see also [1]). Jensen [12] also showed that a function u ∈ C(Ω) is
an infinity harmonic function if and only if u is an absolutely minimizing Lipschitz extension that means u
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satisfies the following property: for any open set V ⊂⊂ Ω ,

sup
x ̸=y∈∂V

|u(x)− u(y)|
|x− y|

= sup
x ̸=y∈V̄

|u(x)− u(y)|
|x− y|

.

In 2001, Crandall–Evans–Gariepy [7] introduced the revolutionary comparison with cones property. They
proved that u ∈ C(Ω) is an infinity harmonic function if and only if u enjoys the comparison with cones
property: for any V ⊂⊂ Ω and any cone function C(x) = a+ b|x− z| with a, b ∈ R,

u(x) ≤ C(x) on ∂(V \{z})⇒ u(x) ≤ C(x) in V ;
u(x) ≥ C(x) on ∂(V \{z})⇒ u(x) ≥ C(x) in V.

The interior differentiability of u was achieved by Evans–Smart [9]. For dimension 2, Savin [14] and
Evans–Savin [8] proved the C1 and C1,α regularity earlier. The continuous interior differentiability of u for
general dimensions remains the most important open problem in this field.

The boundary regularity of infinity harmonic functions was initially studied by Wang–Yu [15] and followed
by the first author of this paper [10,11]. Wang–Yu proved that u is differentiable on the boundary if both
∂Ω and the boundary condition g are C1. For dimension 2, they proved that u is C1 on the boundary if
both ∂Ω and the boundary condition g are C2. In [10], we improved their first result to the following: if
both ∂Ω and g are differentiable at a boundary point x0 ∈ ∂Ω , then u is differentiable at x0. In [11], the
author provided a counterexample to show that |Du| can be discontinuous along the boundary if we only
assume ∂Ω is C1 even if g is smooth and the dimension is 2.

In this paper, we further study the boundary regularity by considering the convex domains. At a boundary
point of a convex domain, the blow-up of the domain always uniquely exists and is a convex cone. There are
exactly two cases: if the blow-up is a half-space, we call the boundary point a flat point, and in this case,
∂Ω is differentiable at this point; if the blow-up is not a half-space, we call the boundary point a corner
point, and in this case, Ω is contained in the intersection of two different half-spaces. At a flat point, the
boundary is differentiable, thus u is differentiable at this point if g is so due to the result in [10]. The corner
point case is more complicated and interesting. Example 1 in Section 2 shows that the differentiability of
g cannot guarantee the differentiability of u in general. In Section 3, we prove that if g is differentiable at
a corner point x0, then the slope function (defined in Section 2) S(x0) ≤ |Dg(x0)|. That is, we have good
control on the slope of u at x0 although u may be not differentiable at x0. In Section 4, we prove that if g is
differentiable at a corner point x0, then when x0 + tDg(x0) ̸∈ Ω for all t ∈ Ru is differentiable at x0; when
x0 + tDg(x0) ∈ Ω for some t ∈ Ru is differentiable at x0 if and only if S(x0) = |Dg(x0)|.

It is very interesting to compare our result with the work of Li D.S. and Wang L.H. for uniformly elliptic
equations on convex domains [13]. For uniformly elliptic equations, at corner points, the differentiability
of the boundary data g guarantees the differentiability of the solution; while at flat points, an extra Dini
condition on g is necessary for the differentiability of the solution (see Theorem 1.2 in [13]).

2. Preliminary

Throughout this paper, we assume Ω ⊂ Rn is a bounded convex domain, and u ∈ C(Ω̄) is an infinity
harmonic function in Ω and u|∂Ω = g.

Let x0 ∈ ∂Ω is a boundary point under study. The set Ω tx0
:= {t(y − x0) : y ∈ Ω} with t > 0 is

nondecreasing due to the convexity of Ω . So the blow up of Ω at x0Ω∞x0
:=

t>0 Ω tx0

exists and is a convex
cone with 0 as its vertex. If Ω∞x0

= {xn > 0} under some coordinates system, we say x0 is a flat point.
Otherwise, Ω∞x0

is strictly contained in a half space. In this case, one can prove (using separation theorem of
convex sets) that there exists δ > 0, such that Ω∞x0

⊂ {xn > δ|xn−1|} under some coordinates system, and
we call x0 a corner point.
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