Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Compactness of minimizing sequences

Lucio Boccardo^{a,*}, Thierry Gallouet^b

^a Dipartimento di Matematica, Sapienza Università di Roma, Piazza A. Moro 2, Roma, Italy ^b Institut de Mathematiques de Marseille, 39 rue Joliot Curie, 13453 Marseille cedex 13, France

ARTICLE INFO

Article history: Received 10 July 2015 Accepted 16 December 2015 Communicated by Enzo Mitidieri Dedicado al Patriarca por su primavera (see also Boccardo (2009) [2])

Keywords: Minimizing sequences Compactness

ABSTRACT

We consider a minimization problem of a functional in the space $W_0^{1,p}(\Omega)$, where $1 and <math>\Omega$ is a bounded open set of \mathbb{R}^N . We prove the compactness, in the space $W_0^{1,p}(\Omega)$, under convenient hypotheses, of a minimizing sequence. The main difficulty is to prove the convergence in measure of the gradient of the minimizing sequence. Furthermore, considering a sequence of minimization problems in the space $W_0^{1,p}(\Omega)$, we prove some convergence results of the sequence of minimizers to the minimizer of the limit problem.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and main results

We deal with integral problems where the functional is defined as

$$J(v) = \int_{\Omega} j(x, v, \nabla v) - \int_{\Omega} fv, \qquad (1)$$

where Ω is a bounded domain of \mathbb{R}^N , $N \ge 1$, and $j : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ is a Carathéodory function, that is, measurable with respect to x in Ω for every $(s,\xi)\mathbb{R} \times \mathbb{R}^N$, and continuous with respect to (s,ξ) in $\mathbb{R} \times \mathbb{R}^N$ for almost every x in Ω .

We assume that there exist $g \in L^1(\Omega)$ and real positive constants α , β such that for almost every x in Ω , for every s in \mathbb{R} , for every ξ and η in \mathbb{R}^N we have

$$\alpha |\xi|^p \le j(x, s, \xi),\tag{2}$$

$$j(x,s,\xi) \le \beta(|\xi|^p + |s|^p) + g(x),$$
(3)

$$f(x) \in L^m(\Omega), \quad m \ge (p^\star)',$$
(4)

* Corresponding author.

E-mail addresses: boccardo@mat.uniroma1.it (L. Boccardo), thierry.gallouet@univ-amu.fr (T. Gallouet).

 $\label{eq:http://dx.doi.org/10.1016/j.na.2015.12.023} 0362-546 X/ © 2016 Elsevier Ltd. All rights reserved.$

where 1 < p, $(p^*)'$ is the Sobolev conjugate of p, if 1 , it is any number greater than 1 if <math>p = N, and m = 1 if p > N.

Thus J(v) is well defined in $W_0^{1,p}(\Omega)$.

Theorem 1. We assume (2), (3), (4) and

 $j(x, s, \xi)$ is strictly convex with respect to ξ , (5)

for a.e. $x \in \Omega$ and all $s \in \mathbb{R}$. Then the minimizing sequences of J, defined in (1), are compact in $W_0^{1,p}(\Omega)$. Furthermore, if u is a limit of a minimizing sequence, then it is a minimizer of J.

The situation, described in Theorem 1 is known in the Calculus of Variations, in some simple cases, where it is easy to prove that a weakly convergent minimizing sequence is also strongly convergent (see Remark 4). Our approach uses deeply Real Analysis techniques and it is slightly close to a method used in [4].

Moreover, we point out some relationships with the results of the papers [5,8,7]. In [5], is proved that, under some assumptions on the strictly convex function $j : \mathbb{R}^M \to \mathbb{R}$, if $(u_n)_{n \in \mathbb{N}}$ and u are functions in $L^1(\Omega, \mathbb{R}^M)$, the sequence (u_n) converges weakly in \mathcal{D}' (convergence assumption weaker than the assumption of the previous papers) and $\limsup \int_{\Omega} j(u_n) \leq \int_{\Omega} j(u)$, then (u_n) converges strongly in $L^1(\Omega, \mathbb{R}^M)$.

Theorem 1 is also true if Hypothesis (4) is replaced by $f \in W^{-1,p'}(\Omega)$ with p' = p/(p-1) and, in (1), $\int_{\Omega} fv$ is replaced by the duality product between f and v. We prove Theorem 1 in Section 2.

An adaptation of the proof of Theorem 1 gives the following result on the convergence of the sequence of minimizers associated to a sequence of data $(f_n)_{n \in \mathbb{N}}$. We denote by $\langle \cdot, \cdot \rangle$ the duality product between $W^{-1,p'}(\Omega)$ and $W_0^{1,p}(\Omega)$.

Theorem 2. We assume (2), (3) and (5). We assume furthermore that j does not depend on its second argument. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of $W^{-1,p'}(\Omega)$ and f such that

$$f_n \text{ converges to } f \text{ in } W^{-1,p'}(\Omega), \quad \text{as } n \to \infty.$$
 (6)

Let u be the minimizer (in $W_0^{1,p}(\Omega)$) of $\int_{\Omega} j(x, \nabla v) - \langle f, v \rangle$ and, for all n, let u_n be the minimizer (in $W_0^{1,p}(\Omega)$) of $\int_{\Omega} j(x, \nabla u_n) - \langle f_n, v \rangle$.

Then the sequence $\{u_n\}$ converges to u in $W_0^{1,p}(\Omega)$.

In Theorem 2, the existence of u (and of u_n for all n) is an easy consequence of (2), (3), (5). In order to prove the uniqueness of u (and of u_n for all n) we also use the fact that j does not depend on its second argument. Indeed, let $v, w \in W_0^{1,p}(\Omega)$ such that $v \neq w$. Let $A = \{\nabla v \neq \nabla w\}$. One has, thanks to (5),

$$j\left(\cdot, \frac{1}{2}\nabla v + \frac{1}{2}\nabla w\right) < \frac{1}{2}j(\cdot, \nabla v) + \frac{1}{2}j(\cdot, \nabla w)$$
 a.e. on A .

Then, since the measure of A is positive, this gives $J(\frac{1}{2}\nabla v + \frac{1}{2}\nabla w) < \frac{1}{2}J(v) + \frac{1}{2}J(w)$ and proves the uniqueness of the minimizers in Theorem 2.

Finally, the proof of the convergence of u_n to u in $W_0^{1,p}(\Omega)$ is given in Section 3.

A natural question consists to replace in Theorem 2 the hypothesis (6) by the hypothesis

$$f_n$$
 converges to f weakly in $W^{-1,p'}(\Omega)$, as $n \to \infty$. (7)

If p = 2, the conclusion of Theorem 2 becomes that $u_n \to u$ weakly in $W_0^{1,p}(\Omega)$. This is quite easy to prove, thanks to fact that the Euler-Lagrange equation of this minimization problem is linear. If $p \neq 2$, this result is not true. A counter example is given in Section 4. However, we have a convergence result of u_n to u, with an additional hypothesis on the sequence $(f_n)_{n \in \mathbb{N}}$. This is given in Theorem 3, whose proof is also in Section 3. Download English Version:

https://daneshyari.com/en/article/839301

Download Persian Version:

https://daneshyari.com/article/839301

Daneshyari.com