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1. Introduction and main results

We deal with integral problems where the functional is defined as

10 = [ i o) - [ o 1)

where (2 is a bounded domain of RNV, N > 1, and j : 2 x R x RY — R is a Carathéodory function, that is,
measurable with respect to  in 2 for every (s,&)R x RV, and continuous with respect to (s, &) in R x RY
for almost every x in f2.

We assume that there exist g € L'(£2) and real positive constants «, (3 such that for almost every x in
2, for every s in R, for every ¢ and 7 in RV we have

alglP < j(z,s,€), (2)
iz, 5,€) < BT + [s]7) + g(x), ®3)
flx) e L™(2), m=(p*), (4)
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where 1 < p, (p*)’ is the Sobolev conjugate of p, if 1 < p < N, it is any number greater than 1 if p = N,
and m=1ifp> N.
Thus J(v) is well defined in Wy ?(£2).

Theorem 1. We assume (2), (3), (4) and
j(m, s,f) 1s strictly convex with respect to &, (5)

for a.e. x € 2 and all s € R. Then the minimizing sequences of J, defined in (1), are compact in Wol’p(_Q).
Furthermore, if u is a limit of a minimizing sequence, then it is a minimizer of J.

The situation, described in Theorem 1 is known in the Calculus of Variations, in some simple cases, where
it is easy to prove that a weakly convergent minimizing sequence is also strongly convergent (see Remark 4).
Our approach uses deeply Real Analysis techniques and it is slightly close to a method used in [4].

Moreover, we point out some relationships with the results of the papers [5,8,7]. In [5], is proved that,
under some assumptions on the strictly convex function j : R® — R, if (u,)nen and u are functions in
LY (02,RM) the sequence (u,,) converges weakly in D’ (convergence assumption weaker than the assumption
of the previous papers) and limsup [, j(un) < [, j(u), then (u,) converges strongly in L'(£2,RM).

Theorem 1 is also true if Hypothesis (4) is replaced by f € W12 (£2) with p’ = p/(p — 1) and, in (1),
/, o fv is replaced by the duality product between f and v. We prove Theorem 1 in Section 2.

An adaptation of the proof of Theorem 1 gives the following result on the convergence of the sequence
of minimizers associated to a sequence of data (f,)nen. We denote by (-,-) the duality product between
W=LP'(02) and W, P(12).

Theorem 2. We assume (2), (3) and (5). We assume furthermore that j does not depend on its second
argument. Let (fn)nen be a sequence of W2 () and f such that

fn converges to f in W™IP (), asn — . (6)

Let u be the minimizer (in Wy () of Jo i@, Vv) = (f,v) and, for all n, let u, be the minimizer (in
Wo(2)) of [ (. Vttn) = {fn,v).

Then the sequence {uy} converges to u in Wy'*(£2).

In Theorem 2, the existence of u (and of w, for all n) is an easy consequence of (2), (3), (5). In order to
prove the uniqueness of u (and of w, for all n) we also use the fact that j does not depend on its second
argument. Indeed, let v, w € W,"*(£2) such that v # w. Let A = {Vv # Vw}. One has, thanks to (5),

1 1 1 1
(=Yt =V ) < 2§(- Vo) + —j(-,Vw) ae. on A.
j(,2 v+2 w><2j(, ’U)+2j(, w) a.e.on

Then, since the measure of A is positive, this gives J(:Vv + 1Vw) < 1J(v) + 3J(w) and proves the
uniqueness of the minimizers in Theorem 2.

Finally, the proof of the convergence of u, to u in WO1 P(£2) is given in Section 3.

A natural question consists to replace in Theorem 2 the hypothesis (6) by the hypothesis

fn converges to f weakly in I/[/_l’p/(Q)7 as n — oo. (7)

If p = 2, the conclusion of Theorem 2 becomes that u,, — u weakly in WO1 P(2). This is quite easy to
prove, thanks to fact that the Euler—Lagrange equation of this minimization problem is linear. If p # 2, this
result is not true. A counter example is given in Section 4. However, we have a convergence result of u, to
u, with an additional hypothesis on the sequence (f,,)nen. This is given in Theorem 3, whose proof is also
in Section 3.
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