Contents lists available at [ScienceDirect](http://www.sciencedirect.com)

Nonlinear Analysis

www.elsevier.com/locate/na

Compactness of minimizing sequences

Lucio Boccardo^{[a,](#page-0-0)[∗](#page-0-1)}, Thierry Gallouet ^{[b](#page-0-2)}

^a *Dipartimento di Matematica, Sapienza Universit`a di Roma, Piazza A. Moro 2, Roma, Italy* ^b Institut de Mathematiques de Marseille, 39 rue Joliot Curie, 13453 Marseille cedex 13, France

a r t i c l e i n f o

Article history: Received 10 July 2015 Accepted 16 December 2015 Communicated by Enzo Mitidieri Dedicado al Patriarca por su primavera (see also Boccardo (2009) [\[2\]](#page--1-0))

Keywords: Minimizing sequences Compactness

a b s t r a c t

We consider a minimization problem of a functional in the space $W_0^{1,p}(\Omega)$, where $1 < p < +\infty$ and Ω is a bounded open set of \mathbb{R}^N . We prove the compactness, in the space $W_0^{1,p}(\Omega)$, under convenient hypotheses, of a minimizing sequence. The main difficulty is to prove the convergence in measure of the gradient of the minimizing sequence. Furthermore, considering a sequence of minimization problems in the space $W_0^{1,p}(\Omega)$, we prove some convergence results of the sequence of minimizers to the minimizer of the limit problem.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and main results

We deal with integral problems where the functional is defined as

$$
J(v) = \int_{\Omega} j(x, v, \nabla v) - \int_{\Omega} fv,
$$
\n(1)

where Ω is a bounded domain of \mathbb{R}^N , $N \geq 1$, and $j : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ is a Carathéodory function, that is, measurable with respect to *x* in Ω for every $(s,\xi)\mathbb{R}\times\mathbb{R}^N$, and continuous with respect to (s,ξ) in $\mathbb{R}\times\mathbb{R}^N$ for almost every *x* in Ω.

We assume that there exist $g \in L^1(\Omega)$ and real positive constants α , β such that for almost every *x* in $Ω$, for every *s* in R, for every $ξ$ and $η$ in \mathbb{R}^N we have

$$
\alpha|\xi|^p \le j(x,s,\xi),\tag{2}
$$

$$
j(x, s, \xi) \le \beta(|\xi|^p + |s|^p) + g(x),\tag{3}
$$

$$
f(x) \in L^m(\Omega), \quad m \ge (p^*)',\tag{4}
$$

Corresponding author.

E-mail addresses: boccardo@mat.uniroma1.it (L. Boccardo), thierry.gallouet@univ-amu.fr (T. Gallouet).

<http://dx.doi.org/10.1016/j.na.2015.12.023> 0362-546X/© 2016 Elsevier Ltd. All rights reserved.

where $1 < p$, $(p^*)'$ is the Sobolev conjugate of p, if $1 < p < N$, it is any number greater than 1 if $p = N$, and $m = 1$ if $p > N$.

Thus $J(v)$ is well defined in $W_0^{1,p}(\Omega)$.

Theorem 1. *We assume* [\(2\)](#page-0-3)*,* [\(3\)](#page-0-4)*,* [\(4\)](#page-0-5) *and*

 $j(x, s, \xi)$ *is strictly convex with respect to* ξ , (5)

for a.e. $x \in \Omega$ and all $s \in \mathbb{R}$ *. Then the minimizing sequences of J, defined in* [\(1\)](#page-0-6)*, are compact in* $W_0^{1,p}(\Omega)$ *. Furthermore, if u is a limit of a minimizing sequence, then it is a minimizer of J.*

The situation, described in [Theorem 1](#page-1-0) is known in the Calculus of Variations, in some simple cases, where it is easy to prove that a weakly convergent minimizing sequence is also strongly convergent (see [Remark 4\)](#page--1-1). Our approach uses deeply Real Analysis techniques and it is slightly close to a method used in [\[4\]](#page--1-2).

Moreover, we point out some relationships with the results of the papers $[5,8,7]$ $[5,8,7]$ $[5,8,7]$. In $[5]$, is proved that, under some assumptions on the strictly convex function $j : \mathbb{R}^M \to \mathbb{R}$, if $(u_n)_{n \in \mathbb{N}}$ and u are functions in $L^1(\Omega,\mathbb{R}^M)$, the sequence (u_n) converges weakly in \mathcal{D}' (convergence assumption weaker than the assumption of the previous papers) and $\limsup \int_{\Omega} j(u_n) \leq \int_{\Omega} j(u)$, then (u_n) converges strongly in $L^1(\Omega, \mathbb{R}^M)$.

[Theorem 1](#page-1-0) is also true if Hypothesis [\(4\)](#page-0-5) is replaced by $f \in W^{-1,p'}(\Omega)$ with $p' = p/(p-1)$ and, in [\(1\),](#page-0-6) $\int_{\Omega} f v$ is replaced by the duality product between f and v . We prove [Theorem 1](#page-1-0) in Section [2.](#page--1-6)

An adaptation of the proof of [Theorem 1](#page-1-0) gives the following result on the convergence of the sequence of minimizers associated to a sequence of data $(f_n)_{n\in\mathbb{N}}$. We denote by $\langle \cdot, \cdot \rangle$ the duality product between $W^{-1,p'}(\Omega)$ and $W_0^{1,p}(\Omega)$.

Theorem 2. *We assume* [\(2\)](#page-0-3)*,* [\(3\)](#page-0-4) *and* [\(5\)](#page-1-1)*. We assume furthermore that j does not depend on its second argument. Let* $(f_n)_{n \in \mathbb{N}}$ *be a sequence of* $W^{-1,p'}(\Omega)$ *and* f *such that*

$$
f_n \text{ converges to } f \text{ in } W^{-1,p'}(\Omega), \quad \text{as } n \to \infty.
$$
 (6)

Let *u* be the minimizer (in $W_0^{1,p}(\Omega)$) of $\int_{\Omega} j(x, \nabla v) - \langle f, v \rangle$ and, for all *n*, let u_n be the minimizer (in $W_0^{1,p}(\Omega)$ *)* of $\int_{\Omega} j(x, \nabla u_n) - \langle f_n, v \rangle$.

Then the sequence $\{u_n\}$ *converges to u in* $W_0^{1,p}(\Omega)$ *.*

In [Theorem 2,](#page-1-2) the existence of *u* (and of u_n for all *n*) is an easy consequence of [\(2\),](#page-0-3) [\(3\),](#page-0-4) [\(5\).](#page-1-1) In order to prove the uniqueness of *u* (and of *uⁿ* for all *n*) we also use the fact that *j* does not depend on its second argument. Indeed, let $v, w \in W_0^{1,p}(\Omega)$ such that $v \neq w$. Let $A = \{\nabla v \neq \nabla w\}$. One has, thanks to [\(5\),](#page-1-1)

$$
j\left(\cdot,\frac{1}{2}\nabla v+\frac{1}{2}\nabla w\right)<\frac{1}{2}j(\cdot,\nabla v)+\frac{1}{2}j(\cdot,\nabla w)\quad\text{a.e. on }A.
$$

Then, since the measure of *A* is positive, this gives $J(\frac{1}{2}\nabla v + \frac{1}{2}\nabla w) < \frac{1}{2}J(v) + \frac{1}{2}J(w)$ and proves the uniqueness of the minimizers in [Theorem 2.](#page-1-2)

Finally, the proof of the convergence of u_n to u in $W_0^{1,p}(\Omega)$ is given in Section [3.](#page--1-7)

A natural question consists to replace in [Theorem 2](#page-1-2) the hypothesis [\(6\)](#page-1-3) by the hypothesis

$$
f_n
$$
 converges to f weakly in $W^{-1,p'}(\Omega)$, as $n \to \infty$. (7)

If $p = 2$, the conclusion of [Theorem 2](#page-1-2) becomes that $u_n \to u$ weakly in $W_0^{1,p}(\Omega)$. This is quite easy to prove, thanks to fact that the Euler–Lagrange equation of this minimization problem is linear. If $p \neq 2$, this result is not true. A counter example is given in Section [4.](#page--1-8) However, we have a convergence result of u_n to *u*, with an additional hypothesis on the sequence $(f_n)_{n\in\mathbb{N}}$. This is given in [Theorem 3,](#page--1-9) whose proof is also in Section [3.](#page--1-7)

Download English Version:

<https://daneshyari.com/en/article/839301>

Download Persian Version:

<https://daneshyari.com/article/839301>

[Daneshyari.com](https://daneshyari.com)