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a b s t r a c t

We develop a framework for studying variational problems in Banach spaces with
respect to gradient relations, which encompasses many of the notions of generalized
gradients that appear in the literature. We stress the fact that our approach is
not dependent on function spaces and therefore applies equally well to functions
on metric spaces as to operator algebras. In particular, we consider analogues
of Dirichlet and obstacle problems, as well as first eigenvalue problems, and
formulate conditions for the existence of solutions and their uniqueness. Moreover,
we investigate to what extent a lattice structure may be introduced on (ordered)
Banach spaces via a norm-minimizing variational problem. A multitude of examples
is provided to illustrate the versatility of our approach.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the classical theory of partial differential equations, one explores the existence of solutions (and
their regularity) by extending spaces of differentiable functions to include functions with only a weak
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notion of derivative. Introducing Lp-spaces and Sobolev spaces has the advantage that one may exploit
the completeness of these spaces in order to find weak solutions of differential equations. In doing so, one
is forced to work with equivalence classes of functions, rather than single functions, and the classical value
of a function at a point is, for some purposes, simply not relevant anymore. Consequently, one tends to use
Banach space techniques to reach the desired results. In particular, when extending the theory to functions
on more general spaces, it becomes apparent that abstract methods are useful as classical techniques may
not be applicable.

Consider the Dirichlet problem for harmonic functions, i.e. to find a harmonic function with given
boundary values in a bounded domain Ω in Rn. This problem can equivalently be reformulated as finding
the minimizer of the energy integral

∥∇u∥2L2(Ω) =

Ω

|∇u|2 dx, (1.1)

over all sufficiently smooth functions with given boundary values. In this note, we aim to give an axiomatic
approach to such problems starting from a quite general notion of gradient, assuming only a weak form of
linearity. Many particular examples of gradients, such as weak gradients, upper gradients in metric spaces,
Hajlasz gradients and algebraic derivations, fall into this class. We shall also consider gradients with no
relation to derivatives (cf. Section 8), as well as examples which come from higher-order differential operators,
such as the Laplacian and biLaplacian (cf. Section 8.3). It deserves to be pointed out that the framework
we develop depends neither on function spaces nor on the commutativity of multiplication and, therefore,
applies equally well to noncommutative settings, such as operator algebras.

We start by introducing an abstract notion of gradient relation and define a Sobolev space based on it.
We show that, under minimal assumptions, this generalized Sobolev space is always a Banach space and
that functions therein possess a unique minimal gradient. In Theorem 3.2 we formulate sufficient conditions
for the existence of solutions to the Dirichlet problem with respect to this minimal gradient in analogy with
(1.1). Furthermore, in Proposition 3.4 we give a condition for the solution to be unique.

In addition to the Dirichlet problem, we also consider the obstacle problem as well as the first eigenvalue
problem (strictly speaking the existence of minimizers for the Rayleigh quotient, cf. Theorem 5.3). To solve
the obstacle problem we reformulate it as a Dirichlet problem, and we can thus use the Dirichlet problem
theory to solve the obstacle problem. Already here one can see the power of our abstract approach, as one
can rarely consider obstacle problems as special cases of Dirichlet problems in more traditional situations
(cf. Remark 3.5). A prominent role in the minimization problems above is played by Poincaré sets, i.e. subsets
K of the abstract Sobolev space which support a generalized Poincaré inequality:

∥u∥ ≤ C ∥∇u∥ , u ∈ K.

Such sets provide natural domains when considering variational problems in the context of gradient relations.
Finally, inspired by the fact that the pointwise maximum of two functions minimizes the Lp-norm among

all functions which majorize both functions, we investigate the possibility of defining the maximum (as
well as the minimum) of two elements in a Banach space via a minimization problem (cf. Propositions 6.4
and 6.12). Furthermore, we formulate necessary and sufficient conditions for the existence of least upper
(resp. greatest lower) bounds (cf. Theorem 6.15).

An axiomatic approach to gradient structures has also been given by Gol’dshtein–Troyanov [5], in the
setting of metric spaces. In contrast to our approach, their theory is based on function spaces, more precisely
on Lp spaces, and is thus considerably more restrictive than ours. Even for Lp, p > 1, our axioms allow
for a much larger class of generalized gradient structures. (For L1 their assumptions can be fulfilled while
ours cannot.) The axiomatic theory from [5] has been further developed in Gol’dshtein–Troyanov [6] and
Timoshin [27,28], but neither the Dirichlet problem nor the obstacle problem has been considered.
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