Semilinear elliptic equations and nonlinearities with zeros

Begoña Barrios ${ }^{\text {a,** }}$, Jorge García-Melián ${ }^{\text {b,c }}$, Leonelo Iturriaga ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Mathematics, University of Texas at Austin, RLM 8.100, 2515 Speedway Stop C1200, Austin, TX 78712-1202, USA
${ }^{\text {b }}$ Departamento de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38271 - La Laguna, Spain
${ }^{c}$ Instituto Universitario de Estudios Avanzados (IUdEA) en Física Atómica, Molecular y Fotónica, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38203 - La Laguna, Spain
${ }^{\text {d Departamento de Matemática, Universidad Técnica Federico Santa María, Casilla V-110, Avda. España, }}$ 1680 - Valparaíso, Chile

A R T I CLE I N F O

Article history:

Received 27 February 2015
Accepted 24 December 2015
Communicated by S. Carl

$M S C$:

primary 35 J 25
35J61
secondary 49J35
35A15

Keywords

Semilinear equations
Nonnegative nonlinearities
Multiplicity of solutions
Variational techniques
Mountain Pass Theorem

A B S T R A C T

In this paper we consider the semilinear elliptic problem

$$
\begin{cases}-\Delta u=\lambda f(u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where f is a nonnegative, locally Lipschitz continuous function, Ω is a smooth bounded domain and $\lambda>0$ is a parameter. Under the assumption that f has an isolated positive zero α such that

$$
\frac{f(t)}{(t-\alpha)^{\frac{N+2}{N-2}}} \text { is decreasing in }(\alpha, \alpha+\delta)
$$

for some small $\delta>0$, we show that for large enough λ there exist at least two positive solutions $u_{\lambda}<v_{\lambda}$, verifying $\left\|u_{\lambda}\right\|_{\infty}<\alpha<\left\|v_{\lambda}\right\|_{\infty}$ and $u_{\lambda}, v_{\lambda} \rightarrow \alpha$ uniformly on compact subsets of Ω as $\lambda \rightarrow+\infty$. The existence of these solutions holds independently of the behavior of f near zero or infinity.
© 2016 Elsevier Ltd. All rights reserved.

[^0]
1. Introduction and results

The purpose of this paper is the study of the semilinear elliptic problem

$$
\begin{cases}-\Delta u=\lambda f(u) & \text { in } \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where f is a nonnegative, locally Lipschitz function defined in $[0,+\infty), \Omega$ is a smooth bounded domain of $\mathbb{R}^{N}(N \geq 3)$ and $\lambda>0$ will be regarded as a parameter. Our main objective is to analyze the existence and multiplicity of positive classical solutions of (1.1) when λ is large.

When f is positive, it turns out that the behaviors at zero and infinity are important in order to ensure the existence of solutions in some domains. The typical example is $f(t)=t^{p}$ with $p \geq 1$, where it is well known that the necessary and sufficient condition for existence is $1<p<\frac{N+2}{N-2}$, at least for star-shaped domains. The situation, however, is slightly different when the nonlinearity has a positive zero; actually, the presence of a zero makes it possible to construct positive solutions without assuming prescribed behaviors for f near zero or infinity. We refer to the survey [17] for an early study of this problem, and to [2,13,14] for its extensions to some more general operators. These previous works were slightly improved recently in [9] where some better conditions on f near its zeros were found to get the existence of at least two solutions for each isolated zero of f when λ is large.

Our objective in the present paper is to generalize the condition found in [9] to deal with some more general nonlinearities. In this regard, it is worthy of mention that, for the canonical class of examples given by $f(t)=h(t)|t-1|^{q}$, where h is locally Lipschitz and $h(1)>0$, the condition previously found in the literature (and specifically in [9]) for the existence of two positive solutions when λ is large enough and the maxima are close to 1 , is $q \leq \frac{N}{N-2}$. This restriction comes from the fact that a Liouville theorem for supersolutions in \mathbb{R}^{N} is used at some moment for the construction of the second solution. In the present work we will find a significantly better condition by using a different Liouville theorem. More precisely, to apply it, we will require that f verifies the following weaker hypothesis:

There exists $\delta>0$ such that the function

$$
\begin{equation*}
\frac{f(t)}{(t-\alpha)^{\frac{N+2}{N-2}}}, \tag{H}
\end{equation*}
$$

is decreasing for $t \in(\alpha, \alpha+\delta)$.
For the class of examples alluded to above, this condition holds whenever $1 \leq q<\frac{N+2}{N-2}$ or $q=\frac{N+2}{N-2}$ and h is decreasing near 1 . Thus $\frac{N+2}{N-2}$ is the expected sharp exponent.

We would like to stress once again that only the behavior of f near its zero α given by hypothesis (H) will be important to have positive solutions for large λ. Therefore the growth of f at infinity can be arbitrary.

Let us next state our main result.
Theorem 1. Assume $N \geq 3$, and let f be a nonnegative locally Lipschitz function with an isolated zero $\alpha>0$, such that hypothesis (H) holds. Then there exists $\lambda_{0}>0$ such that, for $\lambda>\lambda_{0}$, problem (1.1) admits at least two positive solutions u_{λ} and v_{λ} with $u_{\lambda}<v_{\lambda}$ in Ω, and $\left\|u_{\lambda}\right\|_{\infty}<\alpha<\left\|v_{\lambda}\right\|_{\infty}$. Moreover,

$$
\lim _{\lambda \rightarrow+\infty} u_{\lambda}(x)=\lim _{\lambda \rightarrow+\infty} v_{\lambda}(x)=\alpha
$$

uniformly on compact subsets of Ω.
In particular, for the class of examples given by $f(t)=h(t)|t-1|^{q}$, with h not vanishing at one, we have:

https://daneshyari.com/en/article/839317

Download Persian Version:

https://daneshyari.com/article/839317

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: bego.barrios@uam.es (B. Barrios), jjgarmel@ull.es (J. García-Melián), leonelo.iturriaga@usm.cl (L. Iturriaga).

