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1. Introduction

We consider the cubic Camassa—Holm equation (cCH):

mt+[(u2_ui)m]x :07 m=uU— Ugyg, (11)
or
Up — Uyt + Uuy — ui — Aty Uy + 2uxuim + (ui — uz)umz =0. (1.2)

If written as a first-order equation of wu, it is

uy + utu, = %ui — O(u), (1.3)
with
du)=(1-0%)"" Eui} +0,(1 037! |:§’LL3 + uui} . (1.4)
The initial data is
ult=0 = uo(x). (1.5)
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This equation is a complete integrable water wave equation proposed by several different authors
[13,20,21]. It is a suitable approximation of incompressible Euler system without swirl. For smooth solutions
to the equation, we have the following two conserved quantities:

Hy(u) = /R(u2 + u?)dz, Hy(u) = /R (u4 + 2u?u? — Zl))ui> dx. (1.6)

In fact, these two invariant quantities are the Hamiltonian functionals of (cCH), with the compatible Hamil-
tonian operators

1
Jo = —8Im6;1m8x, J1 = —1(61 — 85) (1.7)
With these notations, the equation can be written in the bi-Hamiltonian form
0H, 0H>
— - 2 1.8
my = Ja S Ji S (1.8)

In recent decades, the partial differential equations from the fields of integrable systems have been
studied adequately. Among them are KdV equation (KdV), modified KdV equations (mKdV), general-
ized KdV equations (gKdV), Camassa—Holm equations (CH), generalized Camassa—Holm equations (gCH),
Degasperis—Procesi equation (DP), and so on [7,19]. Some of them are completely integrable. They have Lax
pair formulation of the equations, which allows to apply inverse scattering techniques [6,9,10,12]. However,
not all equations are completely integrable. From analytical point of view, the Hamiltonian quantities usu-
ally provide us the functional spaces for the solutions, which is not sufficient to obtain a solution. It usually
requires further regularity to guarantee compactness. For example, (gKdV) is a semilinear dispersive equa-
tion. In [17], the authors proved global well-posedness by using contraction mapping theorem via dispersive
estimates.

Camassa—Holm equations are closely related with KdV equations in the sense that Camassa—Holm
equations are the tri-Hamiltonian duality of KdV equations [20]. However, unlike KdV equations,
Camassa—Holm equations do not have that strong dispersive effect. In fact, they are more like quasilinear
hyperbolic equations. They have the wave breaking phenomena [8] which is not shared by the KdV-type
equations. The problem of global well-posedness of Camassa—Holm equation is equivalent to the problem of
how to continue the solution after the singularity appears. There are two methods to deal with it in general:
compactness method and method of characteristics. Global existence of weak solutions for (CH) is proved by
compensated compactness method in [11,22], and a result of weak—strong uniqueness is proved in [23]. For
(DP), global wellposedness, including existence, uniqueness and stability, is proved in [5]. The other way to
obtain global well-posedness for (CH) is by the method of characteristics. In [2,3], conservative and dispersive
weak solutions are constructed, and in [1], the authors proved the uniqueness of conservative weak solutions.

Different from the Camassa-Holm equation, the cubic Camassa—Holm equation has higher nonlinearity.
This difficulty is manifested in the equation of characteristics:

dx
- = W —up)(t,x(1)). (1.9)
From the two conserved Hamiltonians, it is hard to expect the right-hand-side to be continuous with respect
to x. So this characteristic ODE may not be globally wellposed. The method of characteristics does not
apply here.
Here I would like to mention another interesting equation—Novikov equation

Up — Uyt + 40Uy — BUUL ULy — U Ugppy = O. (1.10)
This equation shares the same conserved quantity with (¢cCH) but has lower order of nonlinearity. An

advantage of this is reflected on the equation of characteristics:

dx
i u?(t, z(t)). (1.11)
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