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a b s t r a c t

The current paper is devoted to the well-posedness and dynamics of the stochastic 2D
incompressible fractional Magneto-Hydrodynamic(MHD) equations driven by Gaus-
sian multiplicative noise. The nonlocal fractional diffusion leads to a new difficulty
in the convergence since higher order estimates cannot be obtained. The commuta-
tor estimates are introduced to overcome these difficulties. Using the stopping time
technique and monotonicity arguments, the global existence and uniqueness of the
weak solution are obtained in a fixed probability space. Finally, the existence of a
random attractor for the random dynamical systems generated by the solution of
stochastic MHD equation is presented.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, the fractional partial differential equations appear more and more frequently in different research
areas and engineering applications. They have been applied to model various phenomena in image analysis,
risk management and statistical mechanics(see e.g. [2,3]). There have been extensive study and application of
fractional differential equations including the fractional Schrödinger equation [10], fractional Landau–Lifshitz
equation [14,21], fractional Landau–Lifshitz Gilbert equation [20], and fractional Landau–Lifshitz–Maxwell
equation [13].

The dynamics of the velocity and the magnetic field in electrically conducting fluids and some basic
physics conservation laws can be described by the MHD equations. More details of the related background
can be referred to [4,7,17]. There have been extensive study of the MHD equations in the following
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form 
∂tu+ u · ∇u = −∇p+ ν1∂

2
x1
u+ ν2∂

2
x2
u+ b · ∇b,

∂tb+ u · ∇b = η1∂
2
x1
b+ η2∂

2
x2
b+ b · ∇u,

∇ · u = 0, ∇ · b = 0,
u(0, x) = u0, b(0, x) = b0,

(1.1)

where (x1, x2) ∈ R2, t ≥ 0, u = (u1, u2) and b = (b1, b2) denote the velocity field and magnetic field
respectively, p is a scalar pressure, ν1, ν2 ≥ 0 is the kinematic viscosity, η1, η2 ≥ 0 is the magnetic
diffusion. M. Sermange and R. Temam in [23] and G. Duvaut and J.L. Lions in [12] shown the existence and
uniqueness of the global solution corresponding to sufficiently smooth initial data for (1.1) for all parameters
ν1, ν2, η1, η2 > 0, see Theorem 6 in [12]. Also, when some of the parameters are positive, the well-posedness
of (1.1) was obtained in [6,18]. J. Wu in [25] and Y. Zhou in [26] studied the regularity of the solution for
the generalized fractional MHD equations.

Recently, the authors in [5] obtained the global regularity of (1.1) with fractional operator on the case
that ν1 > 1, ν2 = 0 and η1 > 1, η2 = 0 in the following form

∂tu+ u · ∇u+ ε(−△)αu = −∇p+ ∂2
x1
u+ b · ∇b,

∂tb+ u · ∇b+ ε(−△)αb = ∂2
x1
b+ b · ∇u,

∇ · u = 0, ∇ · b = 0,
u(0, x) = u0, b(0, x) = b0,

(1.2)

with ε > 0 and α > 0. For the two dimensional stochastic MHD equations

dX =

ν∆X − (X · ∇)X + S(B · ∇)B −∇


P + 1

2S|B|
2


dt+

Q1dW1(t),

dB = (ν1∆B − (X · ∇)B + (B · ∇)X)dt+

Q2dW2(t),

∇ ·X = 0, ∇ ·B = 0, B · n = 0, in (0,+∞)×O,
X = 0, curl B = 0, on (0,+∞)× ∂O,
X(0, ξ) = x0(ξ), B(0, ξ) = b0(ξ), on O.

(1.3)

Barbu and Da Prato in [1] showed the existence of the solution to the stochastic MHD equations (1.3), and
proved the existence and uniqueness of an invariant measure by coupling methods.

There exists a natural relationship between the fractional Laplace operator (−∆)α and some special
stochastic process. Let X(t, x0, ω) be the solution process of a stochastic partial differential equation. For
observable φ(·), we can define the Markov semigroup {Pt}t≥0 by

Ptφ(Xt) = Eφ(Xt), Pt+s = PtPs.

The infinitesimal generator is the derivative of semigroup Pt at time 0 : Aφ(X) = d
dtPtφ(X), where

the infinitesimal generator A carries information about stochastic process Xt. It is well known that the
infinitesimal generator of Brownian motion is Laplacian operator ∆. For α stable Lévy motion Lαt with
0 < α ≤ 2, by Lévy-Khintchine theorem, its jump measure is να(dy) = Cα

dy
|y|1+α , and the generator of

α-stable Levy noise is just the fractional Laplacian operator (−∆)α2 . For example, the nonlocal operator
such as pseudo-partial differential operator has the following form

Rd\0
[u(x+ y)− u(x)− I{|y|<1}yu

′(x)]να(dy) = −Kα(−∆)α2

where να(dy) = Cα
dy
|y|d+α is the jump measure for the α-stable Levy noise. Hence, (−∆)α is nonlocal except

when α = 0, 1, 2, . . . , it is a pseudo-differential operator whose symbol is |ξ|α, and can be realized through
the Fourier transform

(−∆)αf(ξ) = |ξ|2αf̂(ξ).
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