Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

On the stability of the cut locus

Paolo Albano

Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40127 Bologna, Italy

ARTICLE INFO

Article history: Received 8 October 2015 Accepted 7 February 2016 Communicated by Enzo Mitidieri

MSC: 35F21 26B25 49J52

Keywords: Distance function Eikonal equation Cut locus Singular set

ABSTRACT

In \mathbb{R}^d we consider a Riemannian metric, g, and an open bounded subset, Ω . We study the stability of the cut locus associated with Ω and g w.r.t. perturbations both of the set Ω and of the metric g. In order to have the stability of the cut locus, we assume C^2 regularity of the data, the metrics and the sets (in the case of sets with $C^{1,1}$ boundaries, the cut locus may be unstable). We prove that to C^2 perturbations both of the set and of the metric correspond small changes of the cut locus w.r.t. the Hausdorff distance, i.e. the cut locus is stable in the C^2 category. We give some examples showing that C^1 perturbations may lead to large variations of the cut locus.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and statement of the result

Let Ω' be an open bounded subset of \mathbb{R}^d . Set

$$\mathcal{A}(\Omega') = \{ \Omega \subset \subset \Omega' \mid \Omega \text{ is an open set with boundary of class } C^2 \}$$

and

 $\mathcal{G}(\Omega') = \{g \mid g \text{ is a Riemannian metric with } C^2 \text{ coefficients defined in } \Omega'\}.$

Let $\Omega \in \mathcal{A}(\Omega')$ and let $g \in \mathcal{G}(\Omega')$. By using the metric g, given a piecewise differentiable curve on $\overline{\Omega}$, $\gamma : [0,1] \longrightarrow \overline{\Omega}$, we can measure its length,

$$L(\gamma) = \int_0^1 \sqrt{g_{\gamma(t)}(\gamma'(t))} \, dt.$$

Hence, for every couple of points $x, y \in \Omega$, we denote by d(x, y) the distance between x and y, i.e.

 $d(x,y) = \inf L(\gamma)$

 $\label{eq:http://dx.doi.org/10.1016/j.na.2016.02.008} 0362\text{-}546 X / \textcircled{0}$ 2016 Elsevier Ltd. All rights reserved.

A continued of the second seco

E-mail address: paolo.albano@unibo.it.

(the infimum is taken in the set of all the piecewise differentiable curves on $\overline{\Omega}$ connecting x with y). We consider the distance function from the boundary of Ω , $\partial \Omega$, defined as

$$d_{\partial\Omega}(x) = \inf_{y \in \partial\Omega} d(x, y), \quad (x \in \Omega).$$

Let γ be a geodesic starting at a point of $\partial \Omega$. We say that a point of γ , z, is a *cut point* of $\partial \Omega$ (along γ) if it is the first point on γ such that for any point y in γ beyond z, there exists a geodesic from a point of $\partial \Omega$ to y shorter than γ . We denote by $\operatorname{cut}(\Omega, g)$ the set of all the cut points of $\partial \Omega$ (in Ω) associated with the Riemannian metric g.

We study the stability of the cut locus w.r.t. perturbations both of the set Ω and of the metric g. We recall some basic properties of the cut locus:

- (1) the cut locus has measure zero¹ (see e.g. [14] for general and precise rectifiability results).
- (2) The C^2 regularity of the Riemannian metric and of the boundary implies that the cut locus is a closed set (for a discussion of such a property we refer the reader to Remark 2.1 in the sequel).
- (3) The cut locus, $\operatorname{cut}(\Omega, g)$, has the same homotopy type as the set Ω (see e.g. [4]).
- (4) The cut locus stays away from the boundary of the open set under exam, $\partial \Omega$, (see e.g. [1]).

In particular, $\operatorname{cut}(\Omega, g) \subset \Omega$ is a compact set, for every $\Omega \in \mathcal{A}(\Omega')$ and for every $g \in \mathcal{G}(\Omega')$.

We measure the variations of the cut locus by using the Hausdorff distance between compact sets: given two compact sets $K, L \subset \Omega'$ we define

$$d_H(K, L) = \max\{\max_{x \in K} d_L^e(x), \max_L d_K^e(x)\}.$$

Hereafter $d_K^e(x)$ denotes the Euclidean distance function of x from the set K.

For every $g \in \mathcal{G}(\Omega')$ we have

$$g_x(\xi) = \langle G(x)\xi,\xi\rangle, \quad x \in \Omega', \ \xi \in \mathbb{R}^d.$$
(1.1)

Here $\langle \cdot, \cdot \rangle$ stands for the standard Euclidean product in \mathbb{R}^d and $G(\cdot)$ is a family of positive definite matrices, with entries of class C^2 .

Definition 1.1 (Convergence of the Metrics and of the Sets).

(i) For k = 1, 2, we say that the sequence $g_j \in \mathcal{G}(\Omega')$ converges to $g \in \mathcal{G}(\Omega')$ in C^k if

$$\lim_{j \to \infty} \sum_{|\alpha| \le k} \sup_{x \in \Omega'} \|\partial_x^{\alpha} (G_j - G)(x)\| = 0.$$

(Here $\|\cdot\|$ stands for a norm in the space of the positive definite $d \times d$ matrices.)

- (ii) For k = 1, 2, we say that the sequence $\Omega_j \in \mathcal{A}(\Omega')$ converges to $\Omega \in \mathcal{A}(\Omega')$ in C^k if
 - (1) there exists an open neighbourhood of $\partial \Omega$, $W \subset \Omega'$, such that $\partial \Omega_j \subset W$, j = 1, 2, ...
 - (2) Denoting by dist $(x, \partial \Omega_j) = d^e_{\Omega' \setminus \Omega_j}(x) d^e_{\Omega_j}(x)$ the (Euclidean) signed distance of x from $\partial \Omega_j$, dist $(\cdot, \partial \Omega)$ and dist $(\cdot, \partial \Omega_j)$ are in $C^k(W)$, j = 1, 2, ...
 - (3) $\lim_{j\to\infty} \sum_{|\alpha| \le k} \sup_{x \in W} |\partial_x^{\alpha}(\operatorname{dist}(x, \Omega_j) \operatorname{dist}(x, \Omega))| = 0.$

¹ This property holds under weaker regularity conditions on the boundary of Ω : the cut locus associated with a closed set $C \subset \mathbb{R}^d$ has measure zero (see [5]).

Download English Version:

https://daneshyari.com/en/article/839345

Download Persian Version:

https://daneshyari.com/article/839345

Daneshyari.com