On the stability of the cut locus

Paolo Albano
Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40127 Bologna, Italy

A R T I C L E I N F O

Article history:

Received 8 October 2015
Accepted 7 February 2016
Communicated by Enzo Mitidieri

MSC:

35 F 21
26B25
49J52

Keywords:

Distance function
Eikonal equation
Cut locus
Singular set

Abstract

In \mathbb{R}^{d} we consider a Riemannian metric, g, and an open bounded subset, Ω. We study the stability of the cut locus associated with Ω and g w.r.t. perturbations both of the set Ω and of the metric g. In order to have the stability of the cut locus, we assume C^{2} regularity of the data, the metrics and the sets (in the case of sets with $C^{1,1}$ boundaries, the cut locus may be unstable). We prove that to C^{2} perturbations both of the set and of the metric correspond small changes of the cut locus w.r.t. the Hausdorff distance, i.e. the cut locus is stable in the C^{2} category. We give some examples showing that C^{1} perturbations may lead to large variations of the cut locus.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and statement of the result

Let Ω^{\prime} be an open bounded subset of \mathbb{R}^{d}. Set

$$
\mathcal{A}\left(\Omega^{\prime}\right)=\left\{\Omega \subset \subset \Omega^{\prime} \mid \Omega \text { is an open set with boundary of class } C^{2}\right\}
$$

and

$$
\mathcal{G}\left(\Omega^{\prime}\right)=\left\{g \mid g \text { is a Riemannian metric with } C^{2} \text { coefficients defined in } \Omega^{\prime}\right\} .
$$

Let $\Omega \in \mathcal{A}\left(\Omega^{\prime}\right)$ and let $g \in \mathcal{G}\left(\Omega^{\prime}\right)$. By using the metric g, given a piecewise differentiable curve on $\bar{\Omega}$, $\gamma:[0,1] \longrightarrow \bar{\Omega}$, we can measure its length,

$$
L(\gamma)=\int_{0}^{1} \sqrt{g_{\gamma(t)}\left(\gamma^{\prime}(t)\right)} d t
$$

Hence, for every couple of points $x, y \in \Omega$, we denote by $d(x, y)$ the distance between x and y, i.e.

$$
d(x, y)=\inf L(\gamma)
$$

[^0](the infimum is taken in the set of all the piecewise differentiable curves on $\bar{\Omega}$ connecting x with y). We consider the distance function from the boundary of $\Omega, \partial \Omega$, defined as
$$
d_{\partial \Omega}(x)=\inf _{y \in \partial \Omega} d(x, y), \quad(x \in \Omega) .
$$

Let γ be a geodesic starting at a point of $\partial \Omega$. We say that a point of γ, z, is a cut point of $\partial \Omega$ (along γ) if it is the first point on γ such that for any point y in γ beyond z, there exists a geodesic from a point of $\partial \Omega$ to y shorter than γ. We denote by $\operatorname{cut}(\Omega, g)$ the set of all the cut points of $\partial \Omega$ (in Ω) associated with the Riemannian metric g.

We study the stability of the cut locus w.r.t. perturbations both of the set Ω and of the metric g.
We recall some basic properties of the cut locus:
(1) the cut locus has measure zero ${ }^{1}$ (see e.g. [14] for general and precise rectifiability results).
(2) The C^{2} regularity of the Riemannian metric and of the boundary implies that the cut locus is a closed set (for a discussion of such a property we refer the reader to Remark 2.1 in the sequel).
(3) The cut locus, $\operatorname{cut}(\Omega, g)$, has the same homotopy type as the set Ω (see e.g. [4]).
(4) The cut locus stays away from the boundary of the open set under exam, $\partial \Omega$, (see e.g. [1]).

In particular, $\operatorname{cut}(\Omega, g) \subset \Omega$ is a compact set, for every $\Omega \in \mathcal{A}\left(\Omega^{\prime}\right)$ and for every $g \in \mathcal{G}\left(\Omega^{\prime}\right)$.
We measure the variations of the cut locus by using the Hausdorff distance between compact sets: given two compact sets $K, L \subset \Omega^{\prime}$ we define

$$
d_{H}(K, L)=\max \left\{\max _{x \in K} d_{L}^{e}(x), \max _{L} d_{K}^{e}(x)\right\}
$$

Hereafter $d_{K}^{e}(x)$ denotes the Euclidean distance function of x from the set K.
For every $g \in \mathcal{G}\left(\Omega^{\prime}\right)$ we have

$$
\begin{equation*}
g_{x}(\xi)=\langle G(x) \xi, \xi\rangle, \quad x \in \Omega^{\prime}, \xi \in \mathbb{R}^{d} . \tag{1.1}
\end{equation*}
$$

Here $\langle\cdot, \cdot\rangle$ stands for the standard Euclidean product in \mathbb{R}^{d} and $G(\cdot)$ is a family of positive definite matrices, with entries of class C^{2}.

Definition 1.1 (Convergence of the Metrics and of the Sets).
(i) For $k=1,2$, we say that the sequence $g_{j} \in \mathcal{G}\left(\Omega^{\prime}\right)$ converges to $g \in \mathcal{G}\left(\Omega^{\prime}\right)$ in C^{k} if

$$
\lim _{j \rightarrow \infty} \sum_{|\alpha| \leq k} \sup _{x \in \Omega^{\prime}}\left\|\partial_{x}^{\alpha}\left(G_{j}-G\right)(x)\right\|=0 .
$$

(Here $\|\cdot\|$ stands for a norm in the space of the positive definite $d \times d$ matrices.)
(ii) For $k=1,2$, we say that the sequence $\Omega_{j} \in \mathcal{A}\left(\Omega^{\prime}\right)$ converges to $\Omega \in \mathcal{A}\left(\Omega^{\prime}\right)$ in C^{k} if
(1) there exists an open neighbourhood of $\partial \Omega, W \subset \Omega^{\prime}$, such that $\partial \Omega_{j} \subset W, j=1,2, \ldots$.
(2) Denoting by $\operatorname{dist}\left(x, \partial \Omega_{j}\right)=d_{\Omega^{\prime} \backslash \Omega_{j}}^{e}(x)-d_{\Omega_{j}}^{e}(x)$ the (Euclidean) signed distance of x from $\partial \Omega_{j}$, $\operatorname{dist}(\cdot, \partial \Omega)$ and $\operatorname{dist}\left(\cdot, \partial \Omega_{j}\right)$ are in $C^{k}(W), j=1,2, \ldots$
(3) $\lim _{j \rightarrow \infty} \sum_{|\alpha| \leq k} \sup _{x \in W}\left|\partial_{x}^{\alpha}\left(\operatorname{dist}\left(x, \Omega_{j}\right)-\operatorname{dist}(x, \Omega)\right)\right|=0$.

[^1]
https://daneshyari.com/en/article/839345

Download Persian Version:

https://daneshyari.com/article/839345

Daneshyari.com

[^0]: E-mail address: paolo.albano@unibo.it.

[^1]: ${ }^{1}$ This property holds under weaker regularity conditions on the boundary of Ω : the cut locus associated with a closed set $C \subset \mathbb{R}^{d}$ has measure zero (see [5]).

