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a b s t r a c t

Due to the intractability of the Navier–Stokes equation, it is common to study
approximating equations. Two of the most common of these are the Leray-α equation
(which replaces the solution u with (1 − α2L1)u for a Fourier Multiplier L) and
the generalized Navier–Stokes equation (which replaces the viscosity term ν△ with
νL2). In this paper we consider the combination of these two equations, called the
generalized Leray-α equation. We provide a brief outline of the typical strategies
used to solve such equations, and prove, with initial data in a low-regularity Lp(Rn)
based Sobolev space, the existence of a unique local solution with γ1 +γ2 > n/p+1.
In the p = 2 case, the local solution is extended to a global solution, improving on
previously known results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The incompressible form of the Navier–Stokes equation is given by

∂tu+ (u · ∇)u = ν△u−∇p,
u(0, x) = u0(x), div (u) = 0

(1.1)

where u : I × Rn → Rn for some time strip I = [0, T ), ν > 0 is a constant due to the viscosity of the fluid,
p : I × Rn → Rn denotes the fluid pressure, and the initial data u0 : Rn → Rn. The requisite differential
operators are defined by △ =

n
i=1

∂2

∂2
xi

and ∇ =

∂
∂xi
, . . . , ∂∂xn


.

There is a very wide collection of existence results for the Navier–Stokes equation (see [8]). In dimension
n = 2, the existence of a unique (with respect to the initial condition) global solution to the Navier–Stokes
equation is well known (see [7]; for a more modern reference, see Chapter 17 of [16]). However, establishing
an analogous result for the dimension n ≥ 3 case has proven to be exceptionally challenging.
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To illustrate this, we recall two classical results. First, in [3], Kato and Fujita proved the existence of a
unique (but not global) solution for initial data u0 in the inhomogeneous Sobolev space H1/2,2(R3). One
modern approach to obtaining this result is to show that a solution to the Navier–Stokes equation is the
fixed point of an operator, and then to apply the Contraction Mapping Principle to guarantee the existence
of a (unique) fixed point. This procedure requires functional and harmonic analysis techniques which only
apply on short time intervals, and so this technique is rarely able to provide global existence results.

A standard method for obtaining a global existence result is to use energy estimates. For the Navier–Stokes
equation, it is well known that the energy of a solution decreases in positive time. That is, if u is a solution
to the Navier–Stokes equation, then ∥u(t, ·)∥L2 is a decreasing function of time. In [9], Leray used this
energy estimate to prove that there exists a global, but not necessarily unique, solution to the Navier–Stokes
equation with initial data u0 ∈ L2(R3).

Given a unique local solution from fixed point method and an energy estimate, a bootstrapping argument
can be used to generate a unique global solution. An example of such an argument can be found in Section 5,
but generally a bootstrapping argument requires the energy bound to be in the same function space as the
initial data in the local existence result. In the context of the current discussion, the fixed point method
required initial data in H1/2,2(R3), but the energy bound only gives that the L2 norm of the solution is
decreasing. This gap of a half a point of regularity between the unique local existence result and the energy
estimate prevents the bootstrap.

In response to the difficulty in closing this gap, many approximating equations have been studied. One
of these is the Leray-α equation, which is

∂t(1− α2Lγ)u+∇u(1− α2Lγ)u− ν△(1− α2Lγ)u = −∇p,
u(0, x) = u0(x), div u0 = div u = 0,

(1.2)

where we recall that ∇uv = (u · ∇)v and Lγ is a Fourier multiplier with symbol m(ξ) = −|ξ|γ . Note that
setting α = 0 returns the standard Navier–Stokes equation.

The advantage of the Leray-alpha equation over the Navier–Stokes equation is that the Leray-alpha
equation has an improved energy bound. Specifically, it is straightforward to show that if u is a solution to
(1.2), then ∥u(t, ·)∥Hγ,2 is a decreasing function of time. In this case, it can be shown that, if γ = 1/2, then
Eq. (1.2) has a unique global solution with initial data u0 ∈ H1/2,2(R3).

Another option is to generalize the dissipative term −ν△u. This is called the generalized Navier–Stokes
equation, and is given by

∂tu+ (u · ∇)u = νLγu−∇p,
u(0, x) = u0(x), div (u) = 0,

where Lγ is the same operator as above. Choosing γ = 2 returns the standard Navier–Stokes equation. In
this equation, as γ increases, the regularity required of the initial data to obtain a unique local solution
decreases, and it is known that this equation has a global solution in dimension three if γ ≥ 2.5 (originally
in [11]; see [18] for a more modern reference).

Combining these two approaches returns the generalized Leray-α equation, given by

∂t(1− α2L2)u+∇u(1− α2L2)u− νL1(1− α2L2)u = −∇p,
u(0, x) = u0(x), div u0 = div u = 0,

(1.3)

where the operators Li, with i = 1, 2, are Fourier multipliers with symbols mi(ξ) = −|ξ|γi . Note that setting
γ1 = 2 and γ2 = 0 returns the original Navier–Stokes equation.

These types of generalizations have also been applied to other partial differential equations. For example,
in [10], Linshiz and Titi studied various generalizations of the Magnetohydrodynamic (MHD) system and [2],
in which Bessaih and Ferrario studied the Boussinesq system with generalized dissipative terms.
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