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The mathematical difficulties are that the system becomes singular near the
boundary and it is non-quasimonotone. We show the existence of positive solutions
for the general activator—inhibitor model.
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1. Introduction
The generalized Gierer—Meinhardt or activator—inhibitor model described by

P

ut:DlAu—pu—i—%—i—p(m), ze N t>0,

vt:DgAvfm)JrZ—s, ze 2 t>0, (1.1)
w(z,0) =¢(z) >0 and v(z,0)=v(z) >0, =€,

u=v=0, z€IN, t>0,

often occurs in the study of biological pattern formation. Here Dy, Do, u, v, p,q,r,s are positive and {2 is
a bounded domain in RY with a smooth boundary. v and v represent the concentrations of the activator
and inhibitor, respectively, p(z) > 0 (see [8,9]). Such systems are difficult to treat due to the lack of a
variational structure or a priori estimates. Although boundary conditions were not explicitly mentioned in
the original paper, most works assume a bounded domain and Neumann boundary conditions (see [1,3,13]).
Many authors have investigated Dirichlet boundary conditions (see [4,5,7,11]). In this paper, we consider
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the existence of the steady state solutions to (1.1):

P

Au—,our%er(x):O, x € {2,
s

Av—yv—i—u—S:O, x € {2, (1.2)
v

u=v=0, x€dfN.

Choi and McKenna [4] obtained the existence of radially symmetric solutions in the case 2 = (0,1) or 2 is
aballin R? and p=17>1,q = 1,5 = 0, that is,

uP
Au—uu+7+p(x):0, x € £,

Av—vv+u? =0, ze€,
u=v=0, xz€adf.

Kim [11] shown that the solution is C?(2)(C(2) if p=r,¢ =5,¢ >p—1>0and 0 < v < u. Ghergu
and Radulescu [7] proved the existence results if r —p = s —¢ > 0 and p — ¢ < 1. Furthermore, the solution
is unique if 2 = (0,1). On the other hand, the system has no positive solutions if one of the following
conditions holds:

1.s>1and 2¢ > (s+1)(p+2).
2.s=1and ¢g>p+2.
3.0<s<land qg>p+2.

Later, Ghergu [5] assumed that 0 < p < 1 and

1. if ¢ < p and s < r, then the system has a solution which belongs to C2(2) x C?(02);
2.if =1 < p—q < 0 and -1 < r —s < 0, then the system has a solution which belongs to
C2(Q)NCHHHPI(0) x C2(2)NCHHHT2().

He also obtained an interesting result for a singular and general elliptic system in [6].

In this paper, we use a new functional method to obtain the bounds for the system and then use the
Leray—Schauder fixed-point theorem to prove the existence of a pair of positive solutions under suitable
conditions (see the table and figure below). The new functional method is a very powerful method to obtain
a priori estimates for elliptic and parabolic equations (see [1,2]).

In order to compare our results with previous ones, we list all work’s (p, ¢, r, s) conditions in the following
table and draw Fig. 1 to show the region of solution existence for 1 < p,q < 2:

Paper | p q r S

[1] > 1 =1 =p =0

[11] >1 >p—1 =p =r

[10] >1 >p—1 =r+q—p

This >1 >p—1 >p—1 g—1l<s<r+1
either > r + max(q — p, —1)
or (g—2)r/(p—1)+1<s<r+qg—p

It is easy to see that the regions of the previous results are only a point or a line in rs-plane.

The rest of the paper is organized as follows: In Section 2 we prove a generalized Young’s inequality
and an inequality related to the Laplace operator, then in Section 3 we present our main results and their
proofs.
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