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h i g h l i g h t s

• We study periodically forced motion in groups of interacting systems.
• We present sufficient conditions for the existence of a periodic solution.
• The result is obtained as an application of a topological approach.
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a b s t r a c t

Consider a periodically forced nonlinear system which can be presented as a collec-
tion of smaller subsystems with pairwise interactions between them. Each subsystem
is assumed to be a massive point moving with friction on a compact surface, possibly
with a boundary, in an external periodic field. We present sufficient conditions for
the existence of a periodic solution for the whole system. The result is illustrated by a
series of examples including a chain of strongly coupled pendulums in a periodic field.

© 2016 Elsevier Ltd. All rights reserved.

1. Brief introduction

The phenomenon of forced oscillations has been studied since at least 1922, when G. Hamel proved [8]
that the equation describing the motion of a periodically forced pendulum has at least one periodic solution.
Various results, which generalize and develop [8], have appeared in the literature since this paper; see, for
example, [2,5,7,6,13]. Besides this, forced oscillations in a system of coupled planar pendulums and its gener-
alizations have been studied in [11,12] under the assumption of certain symmetry properties for the forcing
terms. The existence and multiplicity of periodic solutions for coupled systems is also discussed in [3]. In [1],
an important case, which includes various forced systems composed by a finite number of interacting parti-
cles, is considered and conditions for the existence of an asymptotically stable forced oscillation are obtained.

We present a theorem which is also related to the study of the existence of periodic solutions in non-
autonomous systems. Our result can be useful, among other things, in studying forced oscillations in a
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nonlinear lattice, which is a cornerstone model in nonlinear physics and is widely used for analytical and
computational purposes [9,16,4,10]. The result continues a previously reported work [14].

In the paper, the following systems are considered. Let us have several compact smooth manifolds, possibly
with boundaries, with non-zero Euler–Poincaré characteristics. Suppose that for each manifold there is a
massive point moving on it with viscous friction. All points are in an external periodic field and may interact
with each other. It is allowed that the interactions may be of different types and also may be arbitrarily
strong. We present sufficient conditions for the existence of a periodic solution for such a system.

We would like to note that when the considered manifolds are closed, it is not hard to prove that
there exists a periodic solution in the system: it directly follows from the Lefschetz–Hopf theorem. Yet in
applications it appears to be useful to consider manifolds with boundaries to prove the existence of a periodic
solution and estimate it. One of the examples of such kind, which we consider further below, is widely used
in nonlinear studies model of coupled oscillators on a line. Therefore, our result generalizes the approach
based on an application of the Lefschetz–Hopf theorem to the important case of compact manifolds with
boundaries.

Our result is based on a theorem by R. Srzednicki, K. Wójcik, and P. Zgliczyński [15] and provides
an illustrative geometrical approach to study periodical oscillations. Since the result is formulated in a
coordinate-free form, it also avoids the possible shortcomings of purely analytical approaches and can be
relatively easy applied to systems with complex topology of the phase space.

The main theorem is illustrated by a series of examples from mechanics including a system of an arbitrary
number of strongly coupled pendulums in a periodic external field.

2. Main result

2.1. Governing equations

The equations introduced in this subsection – which we are going to use further below in the paper –
generalize the governing equations for a mechanical system consisting of massive points moving with friction-
like interaction on compact surfaces. For the sake of simplicity, we assume that all manifolds and considered
functions are smooth (i.e. C∞).

Let Mi be a compact connected one- or two-dimensional manifold (possibly with a boundary), where
i = 1, . . . , n. For all i = 1, . . . , n, there is a point moving in an external force field on the manifold Mi. We
also assume that there is a friction-like force acting on the point.

In our further consideration, we will study the behavior of the system in vicinities of ∂Mi and it will be
convenient to consider enlarged manifolds M+

i . Let M+
i be a boundaryless connected manifold such that

Mi ⊂M+
i ,dimMi = dimM+

i . Also suppose that every manifoldM+
i is equipped with a smooth Riemannian

metric ⟨·, ·⟩i.
If the points do not interact, one can consider the following independent equations of motion

∇iq̇i q̇i = fi(t, qi, q̇i) + ffrictioni (t, qi, q̇i), i = 1, . . . , n, (1)

where ∇i means the covariant differentiation with respect to the corresponding metric ⟨·, ·⟩i for the ith point
moving on M+

i ; fi : R/TZ × TM+
i → TM

+
i and fi(t, qi, q̇i) ∈ TqiM+

i for any t, qi, q̇i; ffrictioni : R/TZ ×
TM+

i → TM
+
i corresponds to a friction-like force.

As we said before, (1) includes the case of a mechanical system of massive points in an external field.
Indeed, in this case ⟨·, ·⟩i is the corresponding kinetic metric and, for given t, qi and q̇i, fi(t, qi, q̇i) and
ffrictioni (t, qi, q̇i) are the dual vectors to the corresponding generalized forces. Note that from (1) it follows
that if there is no forces acting on the ith point then (1) becomes ∇iq̇i q̇i = 0, which is the equation of the
geodesic motion.
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