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a b s t r a c t

Monitoring the number of insect pests is a crucial component in pheromone-based pest management
systems. In this paper, we propose an automatic detection pipeline based on deep learning for identifying
and counting pests in images taken inside field traps. Applied to a commercial codling moth dataset, our
method shows promising performance both qualitatively and quantitatively. Compared to previous
attempts at pest detection, our approach uses no pest-specific engineering which enables it to adapt to
other species and environments with minimal human effort. It is amenable to implementation on parallel
hardware and therefore capable of deployment in settings where real-time performance is required.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Monitoring is a crucial component in pheromone-based pest
control (Carde and Minks, 1995; Witzgall et al., 2010) systems. In
widely used trap-based pest monitoring, captured digital images
are analysed by human experts for recognizing and counting pests.
Manual counting is labour intensive, slow, expensive, and some-
times error-prone, which precludes reaching real-time perfor-
mance and cost targets. Our goal is to apply state-of-the-art deep
learning techniques to pest detection and counting, effectively
removing the human from the loop to achieve a completely auto-
mated, real-time pest monitoring system.

Plenty of previous work has considered insect classification. The
past literature can be grouped along several dimensions, including
image acquisition settings, features, and classification algorithms.
In terms of image sources, many previous methods have consid-
ered insect specimens (Kang et al., 2012, 2014; Arbuckle et al.,
2001; Weeks et al., 1999; Tofilski, 2004; Wang et al., 2012). Spec-
imens are usually well preserved and imaged in an ideal lab envi-
ronment. Thus specimen images are consistent and captured at
high resolution. In a less ideal but more practical scenario, some
other works attempt to classify insects collected in the wild, but
imaged under laboratory conditions (Larios et al., 2008, 2010;
Martinez-Munoz et al., 2009; Lytle et al., 2010; Al-Saqer et al.,
2010; Cho et al., 2007; Mayo andWatson, 2007). In this case, image
quality is usually worse than the specimen case, but researchers
still typically have a chance to adjust settings to control image

quality, such as imaging all of the insects under a standard orien-
tation or lighting.

From an algorithmic perspective, various types of features have
been used for insect classification, including wing structures (Kang
et al., 2012, 2014; Arbuckle et al., 2001; Weeks et al., 1999; Tofilski,
2004), colour histogram features (Le-Qing and Zhen, 2010; Kaya
and Kayci, 2014), morphometric measurements (Fedor et al.,
2008; Yaakob and Jain, 2012; Tofilski, 2004; Wang et al., 2012),
local image features (Le-Qing and Zhen, 2010; Kaya and Kayci,
2014; Wen et al., 2009; Wen and Guyer, 2012; Lu et al., 2012;
Larios et al., 2011), and global image features (Xiao-Lin et al.,
2009). Different classifiers were also used on top of these various
feature extraction methods, including support vector machines
(SVM) (Wen et al., 2009; Wang et al., 2012; Larios et al., 2010), arti-
ficial neural networks (ANN) (Wang et al., 2012; Kaya and Kayci,
2014; Fedor et al., 2008), k-nearest neighbors (KNN) (Xiao-Lin
et al., 2009; Wen and Guyer, 2012), and ensemble methods
(Larios et al., 2008; Martinez-Munoz et al., 2009; Wen and
Guyer, 2012). In general, however, these proposed methods were
not tested under real application scenarios, for example, images
from real traps deployed for pest monitoring.

Object detection involves also localizing objects in addition to
classification. A few attempts have been made with respect to
insect detection. One option is to perform a ‘‘sliding window”
approach, where a classifier scans over patches at different loca-
tions of the image. This technique was applied for inspection of
bulk wheat samples (Zayas and Flinn, 1998), where local patches
from the original image were represented by engineered features
and classified by discriminant analysis. Another work on bulk grain
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inspection (Ridgway et al., 2002) employed different customized
rule-based algorithms to detect different objects, respectively.
The other way of performing detection is to first propose initial
detection candidates by performing image segmentations. These
candidates are then represented by engineered features and classi-
fied (Qing et al., 2012; Yao et al., 2013). All of these insect detection
methods are heavily engineered and work only on specific species
under specific environments, and are not likely to be directly effec-
tive in the pest monitoring setting.

There are two main challenges in detecting pests from trap
images. The first challenge is low image quality, due to constraints
such as the cost of the imaging sensor, power consumption, and
the speed by which images can be transmitted. This makes most
of the previous work impractical, that is, those based on high
image quality and fine structures. The second challenge comes
from inconsistencies which are driven by many factors, including
illumination, movement of the trap, movement of the moth, cam-
era out of focus, appearance of other objects (such as leaves), decay
or damage to the insect, appearance of non-pest (benign) insects,
etc. These make it very hard to design rule-based systems. There-
fore, an ideal detection method should be capable and flexible
enough to adapt to different varying factors with a minimal
amount of additional manual effort other than manually labelled
data from a daily pest monitoring program.

Apart from the insect classification/detection community, gen-
eral visual object category recognition and detection has been a
mainstay of computer vision for a long time. Various methods
and datasets (Zhang et al., 2013; Andreopoulos and Tsotsos,
2013) have been proposed in the last several decades to push this
area forward. Recently, convolutional neural networks (ConvNets)
(LeCun et al., 1998; Krizhevsky et al., 2012) and their variants have
emerged as the most effective method for object recognition and
detection, by achieving state-of-the-art performance on many well
recognized datasets (Ciresan et al., 2012; Lee et al., 2014; Swersky
et al., 2013), and winning different object recognition challenges
(Russakovsky et al., 2015; Krizhevsky et al., 2012; Szegedy et al.,
2015).

Inspired by this line of research, we adopt the popular sliding
window detection pipeline with convolutional neural networks
as the image classifier. First, raw images are preprocessed with col-
our correction. Then, trained ConvNets are applied to densely sam-
pled image patches to predict each patch’s likelihood of containing
pests. Patches are then filtered by non-maximum suppression,
after which only those with probabilities higher than their
neighbours are preserved. Finally, the remaining patches are
thresholded. Patches whose probability meet the threshold are
considered as proposed detections.

This paper makes two main contributions. First, we develop a
ConvNet-based pest detection method, that is accurate, fast, easily
extendable to other pest species, and requires minimal pre-
processing of data. Second, we propose an evaluation metric for
pest detection borrowing ideas from the pedestrian detection
literature.

2. Data collection

In this section, we describe the collection, curation, and prepro-
cessing of images. Details of detection performed on processed
images are provided in Section 3.

2.1. Data acquisition

RGB colour images are captured by pheromone traps installed
at multiple locations by a commercial provider of pheromone-
based pest control solutions, whose name is withheld by request.

The trap contains a pheromone lure, an adhesive liner, a digital
camera and a radio transmitter. The pheromone attracts the pest
of interest into the trap where they become stuck to the adhesive
surface. The digital images are stored in JPEG format at 640 � 480
resolution, and transmitted to a remote server at fixed time point
daily. Codling moths are identified and labelled with bounding
boxes by technicians trained in entomology. Only one image from
each temporal sequence is labelled and used in this study, so
labelled images do not have temporal correlation with each other.
As a result, all of the labelled moths are unique. Fig. 1a shows a trap
image with all the codling moth labelled with blue bounding
boxes. Fig. 1b shows an image containing no moths but cluttered
with other types of insects. High resolution individual image
patches are shown later in Fig. 11, with their characteristics anal-
ysed in Section 5.3.

2.2. Dataset construction

The set of collected images is split randomly into 3 sets: the
training set, the validation set and the test set. After splitting, the
statistics of each set is roughly the same as the entire dataset,
including the ratio between the number of images with or without
moths, and number of moths per image. Table 1 provides specific
statistics on the entire dataset and the three splits subsequently
constructed.

2.3. Preprocessing

Trap images were collected in real production environments,
which leads to different imaging conditions at different points in
time. This is most apparent in illumination, which can be seen in
Fig. 2a. To eliminate the potential negative effects of illumination
variability on detection performance, we perform colour correction
using one variant (Nikitenko et al., 2008) of the ‘‘grey-world”
method. This algorithm assumes that the average value of red
(R), green (G) and blue (B) channels should equal to each other.
Specifically, for each image, we set the gain of the R and B channels
as follows:

Gred ¼ lred=lgreen;Gblue ¼ lblue=lgreen ð1Þ

where lred;lgreen and lblue are the original average intensities of the
red, green and blue channels, respectively. Gred and Gblue are multi-
plicative gains applied to the pixel intensity values of the red and
blue channels, respectively. Fig. 2b shows images processed by
the grey-world algorithm. We see that the images are white-
balanced to have similar illumination, but still maintain rich colour
information which can be a useful cue for detection downstream. In
this paper, all images are white-balanced prior to detection.

3. Detection pipeline

The automatic detection pipeline involves several steps, as
shown in Fig. 3. We take a sliding window approach, where a
trained image classifier is applied to local windows at different
locations of the entire image. The classifier’s output is a single sca-
lar p 2 ½0;1�, which represents the probability that a particular
patch contains a codling moth. These patches are regularly and
densely arranged over the image, and thus largely overlapping.
Therefore, we perform non-maximum suppression (NMS) to retain
only the windows whose respective probability is locally maximal.
The remaining boxes are then thresholded, such that only patches
over a certain probability are kept. The location of these patches
with their respective probabilities (confidence scores) are the final
outputs of the detection pipeline. We now discuss each of these
stages in more detail.
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