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Let 2 be a domain in R® and h(yp) = E: lzl(aw, ck1O1p) a quadratic form on

Lo($2) with domain C2°((2) where the cg; are real symmetric Loo (§2)-functions with
C(z) = (cgi(x)) > 0 for almost all = € 2. Further assume there are a,d > 0 such
that a’ldlé I<C< adlé I for dr < 1 where d is the Euclidean distance to the
boundary I" of (2.

We assume that I" is Ahlfors s-regular and if s, the Hausdorff dimension of I',
is larger or equal to d — 1 we also assume a mild uniformity property for {2 in the
neighbourhood of one z € I'. Then we establish that h is Markov unique, i.e. it has a
unique Dirichlet form extension, if and only if § > 14 (s—(d—1)). The result applies
to forms on Lipschitz domains or on a wide class of domains with I" a self-similar
fractal. In particular it applies to the interior or exterior of the von Koch snowflake
curve in R? or the complement of a uniformly disconnected set in R<.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of diffusion processes has a distinct probabilistic character and is most naturally studied

on Lj-spaces. Consequently much of the analysis of such processes has relied on methods of stochastic

differential equations or stochastic integration. Our aim, however, is to examine symmetric diffusion problems

on domains of Euclidean space with the techniques of functional analysis and semigroup theory. In particular

we focus on the characterization of uniqueness of the Li-theory on domains with rough or fragmented

boundaries. First we formulate the problem of diffusion as a problem of finding extensions of a given elliptic

operator which generate semigroups with the general characteristics suited to the description of diffusion.

Let £2 be a domain in R, i.e. a non-empty open connected subset, with boundary 82 and S = {S;};>0
a strongly continuous, positive, contraction semigroup on Li({2). If the positive normalized functions in
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Ly (£2) are viewed as probability distributions, then S has the basic properties required for description of
their evolution with time. For brevity we refer to S as a diffusion semigroup. We define S to be symmetric if

(St% flp) = (‘pv Stw) (1)

for all ¢ € L1(2), all ¥ € L1(2) N Lo(£2) and all ¢ > 0. It follows that S extends by continuity from
L1(2) N Loo(2) to a weakly™ continuous semigroup on Lo, (§2) which we also denote by S. The extended
semigroup is automatically equal to the adjoint semigroup S* = {5} };>¢. Then S can be defined on L, ({2)
for each p € (1,00) by interpolation. In particular S is a self-adjoint, positive, contraction semigroup on
Lo(£2). If H is the positive, self-adjoint generator of S, it then follows from the Beurling-Deny criteria (see,
for example, [24]) that the corresponding quadratic form h(p) = ||HY?¢||3 with ¢ € D(h) = D(HY?) is
a Dirichlet form. Therefore the semigroup S is submarkovian, i.e. if 0 < ¢ < 1, then 0 < Sy < 1 for all
t > 0, by the theory of Dirichlet forms [1,7].
Next define the operator Hy on the domain D(Hy) = C°(£2) by

d
Hop=— Y Okcndip (2)

k=1

where cx; = ¢, € WH°(£2) are real and the matrix of coefficients C(z) = (cii(x)) > 0 for all z € 2 in
the sense of matrix order. The corresponding diffusion problem consists of classifying all extensions of Hy
in Lp({2) which generate symmetric diffusion semigroups. One can establish the existence of at least one

such extension by quadratic form techniques. Let hg be the positive, quadratic form associated with Hy on
LQ(Q), i.e.

d
ho(yp) = (¢, Hop) = Z (Okp, cri Oup) (3)
k=1

for all ¢ € D(hg) = CS°(£2). Since Hy is a symmetric operator on Lo({2) the form hg is closable and the
closure, which we denote by hp, is automatically a Dirichlet form [1,7]. The corresponding positive, self-
adjoint operator Hp, the Friedrichs’ extension of Hy, generates a positive, contraction semigroup S” on
L4 (£2) which extends to a similar semigroup on each of the L,-spaces. The extension to L1 (2) automatically
satisfies the symmetry relation (1). Therefore Hp generates a symmetric diffusion semigroup on L ({2). The
extension Hp corresponds to Dirichlet boundary conditions on 9f2. But the same argument establishes
that each Dirichlet form extension of hy determines the generator of a symmetric diffusion semigroup on
L1(82). Therefore there is a one-to-one correspondence between extensions of Hy on Lq({2) which generate
symmetric diffusion semigroups and Dirichlet form extensions of kg on Lo (£2). The classification of extensions
of Hy which generate symmetric diffusion semigroups on L;({2) is now reduced to the more amenable and
transparent problem of classifying the Dirichlet form extensions of hy on Lo($2).

The Dirichlet form extensions of hy have a fundamental ordering property. The closure hp is the smallest
Dirichlet form extension of hg but there is also a largest such extension hpy. The maximal extension hy is
defined on the domain

D(hy) = {p € Wg2(2) : I'(p) +¢* € Li(2)},

loc

where I'(¢) = 22,1:1 ¢k (Ok)(O19) is the carré du champ, by setting

hn(p) = [ doI'(p)(x)
Q

for ¢ € D(hy). Then hy is a Dirichlet form and the associated operator Hpy is the extension of Hy
corresponding to generalized Neumann boundary conditions. But if & is a general Dirichlet form extension
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