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In this paper, the inverse eigenvalue problem of reconstructing 
a Jacobi matrix from its eigenvalues, its leading principal 
submatrix and part of the eigenvalues of its submatrix 
is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.
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In this paper we start the investigation of concavity properties of solutions to systems
of PDE’s in convex domains. In particular we prove that suitable powers of solutions
to some weakly coupled elliptic and parabolic systems are concave.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the weakly coupled elliptic system
−∆u = λ1v

α in Ω ,
−∆v = λ2u

β in Ω ,
u > 0, v > 0 in Ω ,
u = v = 0 in ∂Ω ,

(1.1)

and the weakly coupled parabolic system
∂tu−∆u = λ1v

α in D,

∂tv −∆v = λ2u
β in D,

u > 0, v > 0 in D,

u = v = 0 in ∂D,

(1.2)

where λ1, λ2 > 0, α, β > 0 with αβ < 1, Ω is a bounded convex domain in RN (N ≥ 1) and D := Ω×(0,∞).
In this paper we study the power concavity of solutions to systems (1.1) and (1.2).
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Concavity properties of solutions of elliptic and parabolic equations have fascinated many mathematicians
and have been largely investigated. Among others, Gabriel [15] proved the convexity of the level sets of the
Newtonian potential of a convex set, Makar-Limanov [37] proved that the square root of the torsion function
of a planar convex set is concave, Brascamp and Lieb [6] proved the log-concavity of the first Dirichlet eigen-
function of the Laplacian as well as the preservation of log-concavity of the initial datum by the heat flow,
Caffarelli and Friedman introduced in [8] the so called “constant rank” technique, as well as Alvarez, Lasry
and Lions developed in [1] the technique of the convex envelope, while Korevaar established in his pioneering
work [33] the concavity maximum principle for elliptic and parabolic equations and studied the concavity
properties of solutions of various boundary value problems. Subsequently, Kawohl [29] and Kennington [30]
extended Korevaar’s approach and proved that if u is a solution of the nonlinear elliptic problem

−∆u = λuα in Ω , u > 0 in Ω , u = 0 on Ω ,

where Ω is a bounded convex domain in RN , λ > 0 and 0 ≤ α < 1, then v = u(1−α)/2 is concave in Ω ; in
other words (see below), u is

 1−α
2

-concave. Similarly, the first and the third authors of this paper recently

studied the parabolic power concavity of solutions to the parabolic boundary value problem

∂tu−∆u = λuα in D, u > 0 in D, u = 0 on ∂D,

where Ω is a bounded convex domain in RN , λ > 0, D = Ω × (0,∞) and 0 ≤ α < 1, and proved in [23]
that wγ(x, t) = u(x, t1/γ)(1−α)/2 is concave with respect to (x, t) ∈ D for any γ ≥ 1/2; in other words (see
below), u is parabolically

 1−α
2

-concave.

Since it would be impossible to give a complete bibliography about this subject, for further results we
just refer the reader to the well known monograph by Kawohl [27] and to the papers [1–9,11,17–26,28–38],
some of which are closely related to this paper and the others include recent developments in this subject.

All the above quoted results however treat scalar equations and we are not aware of any result for systems.
Here instead we consider problems (1.1) and (1.2); then, as far as we know, this is the first paper dealing
with concavity properties of solutions to elliptic and/or parabolic systems.

To state our results, we need first to recall the notions of power concavity and parabolic power concavity
of non-negative functions. As above and throughout the paper, let Ω be a convex domain and D = Ω×(0,∞)
and let p > 0. Then a positive function u ∈ C(Ω) is said p-concave if up is concave in Ω , while a positive
function 0 < v ∈ C(D) is said parabolically p-concave if the function D ∋ (x, t) → v(x, t2)p is concave.

Now we are ready to state the main results of this paper.

Theorem 1.1. Let Ω be a bounded convex domain in RN . Let u and v satisfy (1.1). Then u and v are
p-concave and q-concave in Ω , respectively, where

p = 1
2


1 + β

1 + α
− β


= 1− αβ

2(1 + α) and q = 1
2


1 + α

1 + β
− α


= 1− αβ

2(1 + β) . (1.3)

Theorem 1.2. Let (u, v) satisfy (1.2). Then u and v are parabolically p-concave and q-concave in D, respec-
tively, where p and q are as in (1.3).

Notice that 0 < p, q < 1/2 and (p, q)→ (0, 0) as αβ → 1, while p→ 1/2 as α→ 0 and q → 1/2 as β → 0
in accordance with the well known properties of the torsion function of a convex set.

To prove Theorem 1.2, we set U = up and V = vq and construct the parabolically concave envelopes U1/2
and V1/2 of U and V respectively, that are, roughly speaking, the smallest parabolically concave functions
greater than or equal to U and V . Then we prove that U and V coincide with U1/2 and V1/2. To make this,
notice that U1/2 ≥ U and V1/2 ≥ V by construction, then we need to prove only the reverse inequalities.
These follow from the comparison principle (see Theorem 3.1), once we prove that (U1/2, V1/2) is a subsolution
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