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In this paper, the inverse eigenvalue problem of reconstructing 
a Jacobi matrix from its eigenvalues, its leading principal 
submatrix and part of the eigenvalues of its submatrix 
is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.
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We study the Cauchy problem involving non-local Ornstein–Uhlenbeck operators
in finite and infinite dimensions. We prove classical solvability without requiring
that the Lévy measure corresponding to the large jumps part has a first finite
moment. Moreover, we determine a core of regular functions which is invariant for
the associated transition Markov semigroup. Such a core allows to characterize the
marginal laws of the Ornstein–Uhlenbeck stochastic process as unique solutions to
Fokker–Planck–Kolmogorov equations for measures.
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1. Introduction and notation

In this paper we investigate solvability of the Cauchy problem involving non-local Ornstein–Uhlenbeck
operators both in finite and infinite dimensions. We also determine a core of regular functions which is
invariant for the transition Ornstein–Uhlenbeck semigroup. Differently with respect to recent papers (see
[1, Section 5], [19, Section 4.1] and [37, Section 2]) to study the core problem we do not require that the
associated Lévy measure ν corresponding to the large jumps part has a first finite moment (see (8)).

Let us first introduce the Ornstein–Uhlenbeck operator L0 in Rd and its associated stochastic process.
The operator L0 is defined as
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f(x+ y)− f(x)− 1{|y|≤1} (y)

d
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yj ∂xjf(x)

ν(dy), x ∈ Rd, (1)

where 1{|y|≤1} is the indicator function of the closed ball with center 0 and radius 1, Q = (Qij) and A = (Aij)
are given d×d real matrices (Q being symmetric and non-negative definite). Moreover a = (a1, . . . , ad) ∈ Rd

and ν is a Lévy jump measure, i.e., ν is a σ-finite Borel measure on Rd such that

ν({0}) = 0 and


Rd
(1 ∧ |y|2) ν(dy) <∞ (2)

(a ∧ b indicates the minimum between a and b ∈ R). The function f : Rd → R belongs to C2
b (Rd) (i.e., f is

bounded and continuous together with its first and second partial derivatives) and the integral in (1) is well
defined thanks to the Taylor formula. The associated Ornstein–Uhlenbeck process (OU process) solves the
following SDE driven by a Lévy process Z:

dXt = AXtdt+ dZt, t ≥ 0
X0 = x, x ∈ Rd

(3)

(see, for instance, [33,32,24]). The matrix A is the same as in (1) and Z = (Zt)t≥0 = (Zt) is a d-dimensional
Lévy process uniquely determined in law by the previous Q, a and ν (cf. [31, Section 9]). Ornstein–Uhlenbeck
processes with jumps X = (Xt) have many applications to Mathematical Finance and Physics (see for
instance, [3,10,16,18]); moreover in some interesting cases the Lévy measure ν corresponding to the large
jumps part has not first finite moment (see [16,18] when α ∈ (0, 1] and the references therein). For example,
in [16] an Ornstein–Uhlenbeck process driven by a Cauchy process is considered in the context of anomalous
diffusions.

The corresponding transition Markov semigroup (Pt) = (Pt)t≥0 is called the Ornstein–Uhlenbeck
semigroup (or Mehler semigroup):

Ptf(x) = E[f(Xx
t )], t ≥ 0, (4)

for any f : Rd → R which is Borel and bounded (see also (14)). In Section 3.1 we prove well-posedness of
the Cauchy problem 

∂tu(t, x) = L0u(t, x)
u(0, x) = f(x), x ∈ Rd, f ∈ C2

b (Rd),
(5)

where L0u(t, x) = (L0u(t, ·))(x) (see Theorem 3.3). We show that there exists a unique bounded classical
solution given by u(t, x) = Ptf(x), t ≥ 0, x ∈ Rd. Our result is not covered by regularity results on singular
pseudodifferential operators (cf. [20,25] and Remark 3.4). Moreover, it cannot be deduced by standard
arguments of semigroup theory using known results for (Pt) (see, in particular, [33,24,29] and Remark 3.7).
To prove solvability of (5) we first establish the crucial formula

Ptf(x) = f(x) +
 t

0
L0(Psf)(x)ds, t ≥ 0, x ∈ Rd, f ∈ C2

b (Rd) (6)

(see Theorem 3.1). Note that in [33, Theorem 3.1] it is proved that

Ptf(x) = f(x) +
 t

0
Ps(L0f)(x)ds, t ≥ 0, x ∈ Rd, f ∈ C2

K(Rd) (7)
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