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1. Introduction

Let M be a non-compact connected Riemannian manifold and let µ be the Riemannian measure on M .
For each non-empty open subset Ω ⊂M , denote by λ(Ω) the first eigenvalue of the Dirichlet problem in Ω
for the Laplace–Beltrami operator ∆. The Faber–Krahn inequality is a lower bound on λ(Ω) in terms of the
volume µ(Ω) as follows:

λ (Ω) ≥ Λ (µ (Ω)) , (1.1)

where Λ is a non-negative function on (0,+∞). The function Λ is called the Faber–Krahn function of an
open set U ⊂M if (1.1) holds for all Ω ⊂ U . Since λ (Ω) decreases on expansion of Ω , we will always assume
that the Faber–Krahn function is monotone decreasing.

Recall that the classical Faber–Krahn theorem states that, for any open set Ω ⊂ RN ,

λ(Ω) ≥ λ(B),

where B is the Euclidean ball with volume µ(B) = µ(Ω). It is easy to see that λ(B) = cNµ(B)−2/N . Hence,
according to the definition given above, RN has the Faber–Krahn function

Λ(v) = cN v
−2/N .
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This paper describes how Faber–Krahn inequalities and Faber–Krahn functions behave under removal of
a compact set with smooth boundary (Section 2.2, Proposition 2.1 and Theorem 2.4) and under gluing of
several non-compact manifolds (Section 3, Theorem 3.3). This is somewhat a technical goal but these results
should prove useful in various situations. In particular, they extend (in a sense) those of [2] where a Sobolev
inequality for the exterior of certain compact domains in RN was proved.

One specific application of these cutting and gluing results is presented in detail in Section 4. It concerns
with the problem of estimating of the heat kernel on a manifold with ends. To describe more precisely this
application, let us assume that M is geodesically complete and let K ⊂ M be a compact set with smooth
boundary such that M \K has k connected components E1, . . . , Ek. The sets Ei are called the ends of M
with respect to K.

Furthermore, in many cases each end Ei can be considered as the exterior of a compact set with smooth
boundary in another complete manifold Mi. In this case we say that M is a connected sum of M1, . . . ,Mk

and write

M =
k
i=1

Mi

(see Section 3.1 for a careful definition).
Now, suppose that each Mi is a non-compact complete manifold for which we have a good heat kernel

upper bound. What information can we obtain for the heat kernel on the connected sum M?
The study of the relationships between heat kernel bounds and functional inequalities (such as

Faber–Krahn inequalities and others) has been an active area of research during the past decades (see,
e.g., [4,21,8,11]). In view of the previous experience it is natural to attack the above question about heat
kernel bounds on connected sums of manifolds by using the Faber–Krahn inequalities, which is done in this
paper.

We obtain fairly satisfactory heat kernel bounds that are easy to apply in some cases. For example, let
us consider the special case when each end Ei is the exterior of a compact with smooth boundary in a
non-compact complete manifold Mi with non-negative Ricci curvature. Let Vi(x, r) be the volume of the
geodesic ball in Mi of radius r and center x ∈Mi. For any r > 0, set

Vmin(r) = min
1≤i≤k

Vi(oi, r),

where oi ∈ ∂Ei is a fixed reference point. In this situation we prove that, for all t > 0,

sup
x,y∈K

p(t, x, y) ≤ C

Vmin(
√
t)
. (1.2)

(see Theorem 4.5). The estimate (1.2) is used in our paper [13] as a key ingredient for obtaining two-sided
estimates of p (t, x, y) for the full range x, y ∈ M and t > 0 in the above setting. In particular, it follows
from [13] that (1.2) is sharp, that is, has a matching lower bound, provided each manifoldMi is non-parabolic.

We denote by the letters c, C, c′, C ′ etc. positive constants whose values can change at each occurrence.

2. Cutting Faber–Krahn inequalities

In this section we show that the Faber–Krahn inequality is roughly preserved under the removal of a
compact set with smooth boundary.
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