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In this paper, the inverse eigenvalue problem of reconstructing 
a Jacobi matrix from its eigenvalues, its leading principal 
submatrix and part of the eigenvalues of its submatrix 
is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.
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We study the Cauchy problem for the semilinear heat equation on Riemannian
manifolds. Propagation and extinction of solutions are addressed, supposing that
the nonlinear forcing term is either of KPP type or of bistable type. In particular,
we highlight the influence both of sectional curvatures and of Ricci curvature on
such phenomena.
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1. Introduction

We are concerned with the Cauchy problem for semilinear parabolic equations of the form
∂u

∂t
= ∆u+ f(u) in M × (0,∞)

u = u0 in M × {0},
(1.1)

where M is an n-dimensional complete, noncompact Riemannian manifold, and ∆ is the Laplace–Beltrami
operator on M . Concerning the nonlinear forcing term f , we always assume:

f ∈ C1([0, 1]), f(0) = f(1) = 0. (H0)

More precisely, we mainly consider f of two types:
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• the “KPP” type, i.e.

f ′(0) > 0, f(u) > 0 for all u ∈ (0, 1) (H1)

• the “bistable” type, i.e.


(i) there exists a ∈ (0, 1) such that f(u) < 0 for all u ∈ (0, a), f(u) > 0 for all u ∈ (a, 1);

(ii) f ′(0) < 0,
 1

0
f(u)du > 0.

(H2)

On the other hand, regarding the initial datum u0, the following assumption will always be made in the
sequel:

u0 continuous in M, 0 ≤ u0(x) ≤ 1 for all x ∈M. (H3)

In addition, we always suppose that the Ricci curvature is bounded from below by −C(1+dist(x, o)2) for
some positive constant C and for some fixed point o ∈ M . This condition implies that M is stochastically
complete; moreover, the comparison principle for problem (1.1) holds (see [8, Corollary 15.2]), see also
[18, Proposition 3.5, Remark 3.6]. Therefore, by assumptions (H0), (H3) and the comparison principle,
every solution u of problem (1.1) satisfies the inequality

0 ≤ u(x, t) ≤ 1 for all (x, t) ∈M × (0,∞). (1.2)

We always deal with classical solutions of problem (1.1). In this respect, it is easily seen that under
assumptions (H0), (H3) a unique solution of problem (1.1) exists. In fact, the existence follows by the
a priori estimate (1.2) and standard compactness arguments (see e.g. [17]), while the uniqueness by the
comparison principles mentioned above.

The counterpart of problem (1.1) in the Euclidean space Rn, that is
∂u

∂t
= ∆u+ f(u) in Rn × (0,∞)

u = u0 in Rn × {0},
(1.3)

has been subject to detailed investigations in the literature (see, e.g., [1–3,5,7,10,13,15]); moreover, it has
a great interest for applications, especially in Mathematical Biology (see [3]). Clearly, if one considers such
diffusion phenomena on possibly curved space, then they can be described by problem (1.1). Consequently,
it is natural to investigate the influence of the geometry of the underlying space on qualitative properties of
solutions. In this direction, recently in [14] it has been addressed problem (1.1) in the special case that M
is the n-dimensional hyperbolic space Hn, that is

∂u

∂t
= ∆u+ f(u) in Hn × (0,∞)

u = u0 in Hn × {0}.
(1.4)

Let us now recall some results from [3,14]. In [3] it is shown that if the forcing term f is of KPP type,
then propagation always occurs, namely

lim
t→∞

u(x, t) = 1 uniformly on compact subsets of Rn, (1.5)

for every solution u of problem (1.3) with u0 ̸≡ 0. On the other hand, if f is of bistable type, there is a
“threshold effect”. In fact, there is extinction, that is

lim
t→∞

u(x, t) = 0 uniformly on in Rn, (1.6)
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